

 Volume 11, Issue 2, February 2023

Impact Factor: 8.165

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 11, Issue 2, February 2023 ||

| DOI: 10.15680/IJIRCCE.2023.11020001 |

IJIRCCE©2023 | An ISO 9001:2008 Certified Journal | 9251

Computer Immunology- A Guide Towards
Security and Protection

Tarek Omran Abdalla

College of Technical Science, Director of the Information and Documentation Office, Bani Waieed-Libya

ABSTRACT: Natural immune systems protect animals from dangerous foreign pathogens, including bacteria,

viruses, parasites, and toxins. Their role in the body is analogous to that of computer security systems in computing.

Although there are many differences between living organisms and computers, the similarities are compelling and

could point the way to improved computer security. Improvements can be achieved by designing computer immune

systems with some of the important properties of natural immune systems, including multilayered protection; highly

distributed detector, effector, and memory systems; diversity of detection ability across individuals; inexact matching

strategies; and sensitivity to most new foreign patterns. Some of these properties are well known but seldom

implemented successfully; other properties are less well known. The immune system provides a persuasive example

of how they might be implemented in a coherent system. The immune system comprises cells and molecules.

Recognition of foreign protein, called antigen, occurs when immune system detectors, including T cells, B cells, and

antibodies, bind to antigen. Binding between detector and antigen is determined by the physical and chemical

properties of their binding regions. Binding is highly specific, so each detector recognizes only a limited set of

structurally related antigen. When a detector and antigen bind, a complex set of events takes place, usually resulting

in elimination of the antigen by scavenger cells called macrophages. (How antigen is bound and cleared depends on

the type of detectors involved.) A striking feature of the immune system is that the processes by which it generates

detectors, identifies and eliminates foreign material, and remembers the patterns of previous infections are all highly

parallel and distributed. This is one reason immune system mechanisms are so complicated, but it also makes them

highly robust against failure of individual components and to attacks on the immune system itself.

KEYWORDS: immune, computer, protection, security, detector, antigen, mechanism, design, patterns

I.INTRODUCTION

The analogy between computer security problems and biological processes was recognized as early as 1987, when the

term “computer virus’’ was introduced by Adelman [1]. Later, Spafford argued that computer viruses are a form of

artificial life [12], and several authors investigated the analogy between epidemiology and the spread of computer

viruses across networks [7, 10]. However, current methods for protecting computers against viruses and many other

kinds of intrusions have largely failed to take advantage of what is known about how natural biological systems

protect themselves from infection. Some initial work in this direction included a virusdetection method based on T-

cell censoring in the thymus [4] and an integrated approach to virus detection incorporating ideas from various

biological systems [8]. However, these early efforts are generally regarded as novelties, and the principles they

illustrate have yet to be widely adopted. Immunologists have traditionally described the problem solved by the

immune system as that of distinguishing “self’’ from dangerous “other’’ (or “nonself’’) and eliminating other.3 Self is

taken to be the internal cells and molecules of the body, and nonself is any foreign material, particularly bacteria,

parasites, and viruses. The problem of protecting computer systems from malicious intrusions can similarly be viewed

as the problem of distinguishing self from dangerous nonself.[1,2] In this case, nonself might be an unauthorized user,

foreign code in the form of a computer virus or worm, unanticipated code in the form of a Trojan horse, or corrupted

data. Distinguishing between self and nonself in natural immune systems is difficult for several reasons. First, the

components of the body are constructed from the same basic building blocks, particularly proteins, as nonself.

Proteins are an important constituent of all cells, and the immune system processes them in various ways, including in

fragments called peptides, which are short sequences of amino acids. Second, the size of the problem to be solved is

large with respect to the available resources. For example, it has been estimated that the vertebrate immune system

needs to be able to detect as many as 1016 patterns, yet it has only about 105 different genes from which it must

construct the entire immune system (as well as everything else in the body).[3,4] The difficulty of this discrimination

task is shown by the fact that the immune system can make mistakes. Autoimmune diseases provide many examples

of the immune system confusing self with other. The computer security problem is also difficult. There are many

legitimate changes to self, like new users and new programs, and many paths of intrusion, and the periphery of a

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 11, Issue 2, February 2023 ||

| DOI: 10.15680/IJIRCCE.2023.11020001 |

IJIRCCE©2023 | An ISO 9001:2008 Certified Journal | 9252

networked computer is less clearly defined than the periphery of an individual animal. Firewalls attempt to construct

such a periphery, often with limited success. The natural immune system has several distinguishing features that

provide important clues about how to construct robust computer security systems, including: • Multilayered
protection. The body provides many layers of protection against foreign material, including passive barriers, such as

skin and mucous membranes;[5] physiological conditions, such as pH and temperature; generalized inflammatory

responses; and adaptive responses, including both the humoral (B cell) and cellular (T cell) mechanisms. Many

computer security systems are monolithic, in the sense that they define a periphery inside which all activity is trusted.

When the basic defense mechanism is violated, there is rarely a backup mechanism to detect the violation. A good

example is a computer security system that relies on encryption to protect data but lacks a way for noticing whether

the encryption system has been broken.

 • Distributed detection. The immune system’s detection and memory systems are highly distributed; there is no

centralized control that initiates or manages a response. Its success arises from highly localized interactions among

individual detectors and effectors, variable cell division, and death rates, allowing the immune system to allocate

resources (cells) where they are most needed, and from the ability to tolerate many kinds of failures, including

deletion of entire organs, such as the spleen.[6]

 • Unique copies of the detection system. Each individual in a population has a unique set of protective cells and
molecules. Computer security often involves protecting multiple sites, including multiple copies of software and

multiple computers on a network. In these environments, when a way is found to avoid detection at one site, all sites

become vulnerable. A better approach would be to provide each protected location a unique set of detectors or even a

unique version of software. Thus, if one site were compromised, other sites would likely remain secure.

• Detection of previously unseen foreign material. An immune system protecting us from only those diseases against

which we had been vaccinated would be much less effective than one that was able to recognize new forms of

infection. Immune systems remember previous infections and mount a more aggressive response against those seen

before; immunologists call this a secondary response. However, in the case of a novel infection, the immune system

initiates a primary response, evolving new detectors specialized for the infection. This process is slower than a

secondary response but provides an essential capability lacking in many computer security systems. Many virus- and

intrusion-detection methods scan only for known patterns (e.g., virus signatures), leaving systems vulnerable to attack

by novel means. Some exceptions include anomaly intrusion-detection systems [2] and cryptographic checksums.

• Imperfect detection. Not all antigen are well matched by a preexisting detector. The immune system uses two
strategies to confront this problem—learning (during the primary response) and distributed detection (within a single

individual and across populations of individuals). Thus, high systemwide reliability is achieved at relatively low cost

(in time and space) and with minimal communication among components.[7,8]

II.DISCUSSION

What would it take to build a computer immune system with some or all of these features? Such a system would have

much more sophisticated notions of identity and protection than those afforded by current operating systems, and it

would provide general-purpose protection to augment current computer security systems. It would have at least the

following basic components: a stable definition of self, the ability to prevent or detect and subsequently eliminate

dangerous foreign activities (infections), memory of previous infections, a method for recognizing new infections,

autonomy in managing responses, and a method of protecting the immune system itself from attack. If we want to cast

the problem of computer security in the framework of distinguishing self from nonself, the first task is to define what

we mean by self and nonself[9]. Do we want to define self in terms of memory access patterns on a single host,

TCP/IP packets entering and leaving a single host, the collective behavior of a local network of computers, network

traffic through a router, instruction sequences in an executing or stored program, user behavior patterns, or even

keyboard typing patterns? The immune system has evolved its recognition machinery to focus on peptides (protein

fragments), but it must consider many different paths of intrusion. For example, there are two quite different

recognition systems in the immune system: cell-mediated response, aimed at viruses and other intracellular infections,

and humoral response, primarily directed at bacteria and other extracellular material. For computers, self also likely

needs to be presented in multiple ways to provide comprehensive protection. We want our definition of self to be

tolerant of many legitimate changes, including those in files due to editing, new software, new users, new user habits,

and routine activities of system administrators.[10] At the same time, we want it to notice unauthorized changes to

files, viral software, unauthorized users, and insider attacks. In computer security parlance, we want a system with

low rates of false-positives and few false-negatives. It is generally not possible to get perfect discrimination between

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 11, Issue 2, February 2023 ||

| DOI: 10.15680/IJIRCCE.2023.11020001 |

IJIRCCE©2023 | An ISO 9001:2008 Certified Journal | 9253

legitimate and illegitimate activities. Given our bias toward multilayered protection, adaptive responses, and

autonomous systems, we are more willing to tolerate false-negatives than false-positives, because false-negatives for

one layer could well be true positives for another. Two examples of how we are applying ideas from immunology to

today’s computer security problems are intrusion-detection method and distributable change detection. These

examples highlight an important question about how analogies between biology and computer science can be applied.

In one case, the analogy is much more direct than in the other. Yet both examples incorporate the basic principles we

elucidated earlier and support the overall vision guiding our work. The analogy between immunology and computer

security is a rich one and goes well beyond these two examples. For example, Kephart et al. [8] exploit a similar

analogy in quite different ways. In the quest for computer security, the analogy with immunology contributes an

important point of view that can potentially lead to systems built with quite different sets of assumptions and biases

from those used in the past. It is more important that the underlying principles be correct than that the surface-level

analogy be obvious.

As an initial step toward defining self in a realistic computing environment, we are developing an intrusion-detection

system for networked computers [5]. Discrimination must be based on some characteristic structure that is both

compact and universal in the protected system. The immune system’s “choice’’ of basing discrimination on patterns

of peptides limits its effectiveness. For example, it cannot protect the body against radiation. However, proteins are a

component of all living matter and generally differ between self and nonself, so they provide a good distinguishing

characteristic. What is the most appropriate way to define self in a computer? Most earlier work on intrusion-

detection monitors the behavior of individual users, but we concentrate instead on system processes [9]. Our

computer “peptide’’ is defined in terms of short sequences of system calls executed by privileged processes in a

networked operating system. Preliminary experiments on a limited testbed of intrusions and other anomalous behavior

show that short sequences of system calls (currently, sequences of six system calls) provide a compact signature for

self, distinguishing normal from abnormal behavior. The strategy for our intrusion-detection system is to build up a

database of normal behavior for each program of interest. Each database is specific to a particular architecture,

software version and configuration, local administrative policies, and usage patterns. When a stable database is

constructed for a given program in a particular environment, the database can be used to monitor the program’s

behavior. The sequences of system calls form the set of normal patterns for the database, and sequences not found in

the database indicate anomalies. In terms of the immune system, one host (or small network of hosts) would have

several different databases defining self (one for each type of program being protected). Having several different

databases is analogous to the many types of tissue in the body, each expressing a somewhat different set of proteins.

That is, the patterns comprising self are not uniformly distributed throughout the protected system. The proposed

system involves two stages. In the first, we scan traces of normal behavior and build up a database of characteristic

normal patterns, or observed sequences of system calls, (see the sidebar “A Database of Normal Patterns”).[11]

Parameters to system calls are ignored by the system, and we trace forked subprocesses individually. In the second,

we scan traces that might contain abnormal behavior, matching the trace against the patterns stored in the database. If

a pattern is seen that does not occur in the normal database, it is recorded as a mismatch. In our current

implementation, tracing and analysis are performed off-line. Mismatches are the only observable characteristic we use

to distinguish normal from abnormal. We observe the number of mismatches encountered during a test trace and

aggregate the information in several ways. Do the normal databases allow the system to discriminate between normal

and abnormal behavior? To date, we have constructed databases of normal behavior for three Unix programs:

sendmail, wu.ftpd (a Linux version of ftpd), and lpr. When comparing the normal database for one program (e.g.,

sendmail) with traces of normal behavior of a different program (e.g., ls), we observed 40%–80% mismatches over

the length of the foreign (e.g., ls) trace. We also observed clear detection of several common intrusions for the three

programs (mismatch rates generally ranged from 1%–20% for the length of the trace). These results suggest that short

sequences of system calls do provide a compact signature for normal behavior and that the signature has a high

probability of being perturbed during intrusions. Although this method does not provide a cryptographically strong or

completely reliable discriminator between normal and abnormal behavior, it is much simpler than other proposed

methods and could potentially provide a lightweight, real-time tool for continuously checking executing code.

Another appealing feature is that code running frequently will be checked frequently, and code that is seldom

executed will be checked infrequently. Thus, system resources are devoted to protecting the most relevant code

segments. Finally, given the large variability in how individual systems are configured, patched, and used, we

conjecture that databases at different sites would likely differ enough to meet the principle of diversity discussed

earlier. Diversity is important for another reason—it could provide a behavioral signature, or identity, for a computer

that is much more difficult to falsify than, say, an IP address. However, our results are quite preliminary, and a great

deal of additional testing and development is needed before a system built on these ideas could be deployed.[12]

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 11, Issue 2, February 2023 ||

| DOI: 10.15680/IJIRCCE.2023.11020001 |

IJIRCCE©2023 | An ISO 9001:2008 Certified Journal | 9254

III.RESULTS

The second example of applying immunology to computer security borrows more closely from mechanisms in the

immune system. T cells are an important class of detector cells in the immune system. There are several different

kinds of T cells, each playing a role in the immune response. However, all T cells have binding regions that can detect

antigen fragments (peptides). These binding regions are created through a pseudo-random genetic process, which can

be viewed as analogous to generating random strings. Given that the binding regions, called receptors, are created

randomly, there is a high probability that some T cells will detect self peptides, causing an autonomous response. The

immune system solves this problem by sending nonfunctional T cells to an organ called the thymus to mature. There

are several stages of T-cell maturation, one of which is a censoring process whereby T cells that bind with self

proteins circulating through the thymus are destroyed. T cells failing to bind to self are allowed to mature, leave the

thymus, and become part of the active immune system, a process called negative selection .Once it is in circulation

and when a T cell binds to antigen above a threshold, a recognition event is said to have occurred, triggering the

complex set of events leading to elimination of the antigen. The T-cell censoring process can be thought of as

defining a protected collection[8] of data (the self proteins) in terms of its complementary patterns (the nonself

proteins). We can use this principle to design a distributed change-detection algorithm with interesting properties.

Suppose we have a collection of digital data we call self that we wish to monitor for changes. This might be an

activity pattern, as in the intrusion-detection algorithm described earlier, a compiled program, or a file of data. The

algorithm works as follows: 1. Generate a set of detectors that fail to match self 2. Use the detectors to monitor the

protected data 3. When a detector is activated, recognize that a change must have occurred and know the location of

the change[10]. Before we have an implementable algorithm, we must answer several questions:

• How are the detectors represented?
• How is a match defined?
• How are detectors generated?

 • How efficient is the algorithm?

 These questions are explored in detail in [3] and [4], but we give some highlights here. In our computer immune

system, binding between detectors and foreign patterns is modeled as string matching between pairs of strings. Self is

defined as a set of equal-length strings (e.g., by logically segmenting the protected data into equal-size substrings),

and each detector is defined as a string of the same length as the substring. A perfect match between two strings of

equal length means that at each location in the string the symbols are identical. However, perfect matching is rare in

the immune system. Partial matching in symbol strings can be defined using Hamming distance, edit distance, or a

more immunologically plausible rule called r-contiguous bits [11] based on regions of contiguous matches. The rule

looks for r contiguous matches between symbols in corresponding positions. Thus, for any two strings x and y, we say

that match(x,y) is true if x and y agree at no less than r contiguous locations. Detectors can be generated in several

ways. A general method (that works for any matching rule) is also the one apparently used by the immune system. It

goes like this: Simply generate detectors at random and compare them against self, eliminating those that match self.

For the “r-contiguous-bits’’ rule, the random generating procedure is inefficient—often exponential in the size of

self.4 However, more efficient algorithms based on dynamic programming methods allow us to generate detectors in

linear time for certain matching rules [3]. The total number of detectors required to detect nonself (using the r-

contiguous-bits matching rule) is the same order of magnitude as the size of self.5 The algorithm has several

interesting properties. First, it is easily distributed because each detector covers a small part of nonself. A set of

negative detectors can be split up over multiple sites, reducing the coverage at any given site but providing good

systemwide coverage. Achieving similar systemwide coverage with positive detection is much more expensive; either

a nearly complete set of positive detectors is needed at every site, resulting in multiple copies of the detection system,

or the sites must communicate frequently to coordinate their results. A second point about this algorithm is that it can

tolerate noise, depending on the details of how the matching function is defined.[5]

IV.IMPLICATIONS

Consequently, the algorithm is likely to be more applicable to dynamic or noisy data, like the intrusion-detection

example, than for, say, cryptographic applications in which efficient change-detection methods already exist. The

algorithm’s feasibility was originally shown for the problem of computer virus detection in DOS environments [4] in

which the protected data was DOS system files; the self set was generated by logically segmenting .com files into

equal-size substrings of 32 (binary) characters; detectors (32-bit strings) were generated randomly; the r-contiguous-

bits matching rule was used with thresholds ranging from 8 to 13 contiguous positions; and infections were generated

by various file infector viruses. For example, one self set consisted of 655 self strings and was protected with

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 11, Issue 2, February 2023 ||

| DOI: 10.15680/IJIRCCE.2023.11020001 |

IJIRCCE©2023 | An ISO 9001:2008 Certified Journal | 9255

essentially 100% reliability by as few as 10 detectors. Similar results were later obtained with boot-sector viruses. An

intrusion-detection system could be part of a multilayered system, possibly sitting behind cryptographic and user

authentication systems. [9] It could be distributed among sites, possibly using the negative-selection algorithm.

Because the databases of normal behavior are generated empirically, based on local operating conditions, each

different site would have unique protection, conferring diversity of protection across sites. Finally, by focusing on

anomaly intrusion detection, the intrusion-detection system trivially meets the requirement of being sensitive to new

attacks. Besides the five principles of multilayered protection, distributability, diversity, sensitivity to new intrusions,

and inexact matching, other useful organizing principles suggested by the immune system include:

• Disposability. No single component is essential.
 • Automated response and self-repair.

• No secure components. Mutual protection among components compensates for lack of a secure code base.
 • Dynamically changing coverage. In resource-constrained environments, changing coverage over time compensates

for incomplete coverage at any single instant. [10]

The two examples explored here of how these principles can be incorporated into a computer security framework

represent some initial steps toward the larger intellectual vision of robust and distributed protection systems for

computers. However, we ignored many important complexities of the immune system, some of which will have to be

incorporated before we achieve our goal. For example, it is difficult to imagine how we could implement truly

distributed protection without adopting the immune system strategy of self-replicating components or emulating some

of the complex molecular signaling mechanisms (e.g., interleukins) used to control the immune response. Another

aspect of the analogy not yet specified involves the circulation pathways through which immune cells migrate in the

body. More generally, many other biological mechanisms have been incorporated into computational systems,

including evolution, neural models, viruses, and parasites, many of which might be relevant to the computer security

problem. In the near future, we hope to integrate the negative-selection algorithm with our intrusion-detection work

and then begin augmenting the system with other immune system features.[11]

V.CONCLUSIONS

Although we stress the similarities, there are also many important differences between computers and living systems.

In the case of immunology and computer security, probably the most important difference is that the immune system

is not concerned with the important problems of protecting secrets, privacy, or other issues of confidentiality. The

success of the analogy ultimately rests on our ability to identify the correct level of abstraction, preserving what is

essential from an information-processing perspective and discarding what is not. This task is complicated by the fact

that natural immune systems process cells and molecules, but computer immune systems would handle other kinds of

data. In the case of a computer-vision or speech-recognition system, the input data is in principle the same as that

processed by the natural system—photons or sound waves. Deciding exactly how to draw the analogy between

immunology and computation is a difficult task, and there are many different strategies that could be tried. We model

peptides as sequences of system calls and binding as string matching. There are many other possible choices, some of

which we hope to explore in future work.[12]

REFERENCES

1. Cohen, F. Computer viruses. Comput. Secu. 6 (2001), 22–35.

 2. Denning, D.E. An intrusion-detection model. IEEE Trans. Software Eng. 2, 222 (Feb.2012), 118–131.

3. D’haeseleer, P., Forrest, S., and Helman, P. An immunological approach to change detection: Algorithms, analysis,

and implications. In Proceedings of the 2007 IEEE Symposium on Computer Security and Privacy (Oakland, Calif.,

May 6–8, 2007). IEEE Press, Los Alamitos, Calif., 2007, pp. 110–119.

4. Forrest, S., Perelson, A.S., Allen, L., and Cherukuri, R. Self-nonself discrimination in a computer. In Proceedings

of the 2011 IEEE Symposium on Research in Security and Privacy (Oakland, Calif., May 16–18, 2011). IEEE

Computer Society Press, Los Alamitos, Calif., 2011, pp. 202–212.

 5. Forrest, S., Hofmeyr, S., Somayaji, A., and Longstaff, T. A sense of self for Unix processes. In Proceedings of the

2015 IEEE Symposium on Computer Security and Privacy (Oakland, Calif., May 6–8, 2015). IEEE Press, Los

Alamitos, Calif., 2015, pp. 120–128.

6. Janeway, C.A., and Travers, P. Immunobiology: The Immune System in Health and Disease, 2d ed. Current

Biology Ltd., London, 2008.

7. Kephart, J.O., White, S.R., and Chess, D.M. Epidemiology of computer viruses. IEEE Spectrum 30, 5 (May 2009),

20–26.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 11, Issue 2, February 2023 ||

| DOI: 10.15680/IJIRCCE.2023.11020001 |

IJIRCCE©2023 | An ISO 9001:2008 Certified Journal | 9256

 8. Kephart, J.O., Sorkin, G.B., Arnold, W.C., Chess, D.M., Tesauro, G.J., and White, S.R. Biologically inspired

defenses against computer viruses. In Proceedings of the International Joint Conference on Artificial Intelligence,

2012.

9. Ko, C., Fink, G., and Levitt, K. Automated detection of vulnerabilities in privileged programs by execution

monitoring. In Proceedings of the 10th Annual Computer Security Applications Conference (Dec. 5–9, 2011), pp.

134–144.

 10. Murray, W.H. The application of epidemiology to computer viruses. Comput. Secur. 7 (2010), 139–150.

11. Percus, J.K., Percus, O., and Perelson, A.S. Predicting the size of the antibody-combining region from

consideration of efficient self/nonself discrimination. In Proceedings of the National Academy of Science 90 (2012),

pp. 1691–1695.

12. Spafford, E.H. Computer viruses: A form of artificial life? In Artificial Life II, C.G. Langton, C. Taylor, J.D.

Farmer, and S. Rasmussen, eds. Addison-Wesley, Redwood City, Calif., 2017, pp. 727–745

http://www.ijircce.com/

8.165

