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ABSTRACT: As an integral part of data cleansing, Duplicate detection is the process of finding multiple records that 
represent the same real-world entity in a dataset. Databases contains very large dataset and the duplicate detection 
needs to complete its process in very shorter time. The windowing methods, in particular Sorted Neighbourhood 
Method (SNM) is one of the most popular method used for duplicate detection. In recent years, a variety of 
improvements of SNM have been proposed. One among them is Progressive Sorted Neighborhood Method. One 
challenge that has emerged is that it is not straightforward to differentiate between the multiple variants of SNM 
existing today. Thus, in this paper, a comparison is made between the traditional SNM , its adaptive approach named 
DCS++ and the progressive SNM. The purpose of this comparative study is to show the difference between these 
methods in terms of their performance. The evaluation result shows that the progressive SNM finds most of the 
duplicates earlier than both the traditional Sorted Neighborhood and Adaptive DCS++ method. 
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I. INTRODUCTION 
 
Data is one of the most important resources in a company. It represents the whole business knowledge about 

products, customers, suppliers and transactions and forms the main source of information. Since data changes in the 
course of daily business, faults occur and information invalidate. Steve Sarsfield emphasizes the growing of a company 
and its data volume as a major reason for quality issues. The insertion of new data items always bears the risk of 
producing errors and existing data items might become obsolete in the ever changing business environment. Redundant 
data management and the integration of different data sources may as well result in faulty data pools. Ignoring these 
errors forces a company to base its strategic decisions on incorrect information. The consequences are avoidable costs 
and competitive disadvantages.  

Duplicate Detection, as an integral part of data cleansing, focuses on finding different representations of the same 
real world entity by comparing multiple records. A Duplicate Detection process is very costly due to extremely large 
data sets and compute-intensive record comparisons. At the same time, it may be very important to run duplicate 
detection within a limited amount of time.  

In this paper, a Progressive Sorted Neighborhood Method (PSNM) is discussed which is a pay-as-you-go approach 
that identifies most duplicate pairs early in the process. Instead of limiting the overall time required to finish the whole 
duplicate detection process, progressive approaches try to limit the average time after which an arbitrary duplicate is 
found. A conservative duplicate detection algorithm collects all duplicates internally and emits them in the end. On the 
contrary, incremental algorithms already report intermediate results at execution time. Hence, they deliver first 
duplicates right from the start.  

In this approach, partial results are gradually obtained as the duplicate detection process is in progress, so we can get 
at least some results faster. The partial results need not have to find all the records that belongs to the same real-world 
entity. The goal is to obtain as much of the overall result as quickly as possible [2]. The aim of progressive duplicate 
detection is to identify most matches early in the process. Therefore, the PSNM increase the efficiency of the duplicate 
detection and not the quality of the reported results. Traditionally, blocking and windowing techniques are used to 
decrease the complexity of the duplicate detection process . Now, one may argue that neither blocking nor windowing 
approaches may find all duplicates in a corpus. Therefore, terminating a progressive algorithm prematurely might be 
reasonable to find slightly less duplicates in a much shorter time. Early termination, in particular, yields more results on 
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a progressive algorithm than on any traditional approach. Hence, the progressive approaches increase the efficiency 
especially for use case scenarios that do not need the complete result. A real world entity is often described by more 
than two records. A set of records that refers to the same real world entity is called a duplicate cluster, because all 
record pairs within this set are duplicates. By sorting or grouping the input records, the duplicate detection algorithm 
moves the records of a cluster closer together. Afterwards, the input data exhibits regions of higher and lower duplicate 
density. Using this observation, adaptive windowing techniques [5] dynamically adjust their window sizes depending 
on the amount of currently found duplicates. Duplicate Count Strategy++ (DCS++) is one such adaptive technique that 
can dynamically improve the efficiency of duplicate detection, but in contrast to the progressive techniques, they need 
to run for certain periods of time and cannot maximize the efficiency for any given time slot. 

II.  VARIANTS OF SORTED NEIGHBOURHOOD METHOD 
 
Extensive research has also been done on pair selection algorithms that try to maximize recall on the one hand and 

efficiency on the other hand [3]. The Sorted Neighbourhood Method is the most prominent pair selection approach that 
significantly reduced the complexity of the duplicate detection process. In this method, it first sort the records in the 
data list using a sorting key and move a fixed size window through the sequential list of records limiting the 
comparisons for matching records to those records in the window. If the size of the window is w records, then every 
new record entering the window is compared with the previous w - 1 records to find matching records. The first record 
in the window slides out of the window. It applies a fixed sized sliding window on a sorted set of records to select 
comparison candidates [6]. 

 
A. Progressive SNM Algorithm 

Progressive SNM is based on traditional sorted neighborhood method. Progressive SNM [1] first sorts the data using a 
predefined sorting key with an intuition that records that are close in the sorted order are more likely to be duplicates 
than records that are far apart, because they are already similar with respect to their sorting key. The Progressive 
method then assumes that the distance of two records in their rank after sorting defines the likelihood of been a 
duplicate. The PSNM algorithm exploits this assumption by comparing records with their direct neighbors first. Then, 
the algorithm successively increases the distance between the comparison candidates. Since the algorithm is based on 
the Sorted Neighborhood Method, it practically starts sliding a window of size two over the sorted dataset in the first 
iteration. In a second iteration, the window size is three, in the third iteration four and so on until the final window size 
is reached. Thereby, each iteration only executes those record comparisons that have not been executed in a previous 
iteration. Using the LookAhead function, the PSNM algorithm dynamically changes the execution order of the 
comparisons.  

Algorithm 1 shows the implementation of Progressive SNM. The algorithm mainly takes 5 input parameters: DS is 
a reference to the data set. The parameter maxWindow specifies the maximum window size and Key stands for the 
sorting key that defines the attribute which is to be used in the sorting step. The progressive strategy discussed here 
assume that all keys are single attribute keys. In principal, a key can be any combination of attributes. However, we 
focus on single attribute keys, because of simplicity reasons. Parameter Interval defines the enlargement interval of the 
iterations. In other words, the Interval defines how many window distance dist iterations should be executed on each 
loaded partition. For instance, if the parameter Interval is 3 then the algorithm loads the first partition to execute dist 1 
to 3 sequentially, then it loads the second partition to execute the same interval of dist and so on until all the partitions 
have been loaded once. Afterwards, all partitions are loaded again to run dist 4 to 6 and so forth. This strategy reduces 
the number of load processes. The last parameter Rnum stands for the number of records in the data set.  

As the entire dataset will not fit in main memory, PSNM operates on a partition of the dataset at a time. The set of 
records that the algorithm will load within the partition is calculated in Line 2. Thus partition size is the maximum 
number of records that fit in the memory. Line 3 defines an order array which stores the order of records with respect to 
the given sorting key key. In line 4, PSNM sorts the dataset DS by the sorting key key. Afterwards, PSNM linearly 
increases the size of the window from minimum of 2 to the maximum window size maxWindow in steps of Interval. 
Thus the PSNM algorithm selects promising close neighbors first and less promising far-away neighbors later on. 
PSNM reads the entire dataset once, for each of these progressive iterations. Since the load process is performed 
partition-wise, PSNM sequentially iterates (Line 6) and loads (Line 7) all partitions. 
Algorithm 1 Progressive Sorted Neighborhood Method  
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Step 1:  procedure PSNM(DS, maxWindow, Key, Interval, Rnum)  
Step 2:         Partitions  ←  CalcPartitions(DS)  
Step 3:        array order size Rnum as integer   
Step 4:       order  ← OrderBy(Key, DS)  
Step 5:       for I  ← 2 to ceil(maxWindow/Interval)  do   
Step 6:         for Partition  € Partitions do  
Step 7:         rec  ← loadPartition(DS, Partition)  
Step 8:     for dist € range( I,Interval,maxWindow)  do   
Step 9:          for  index ← 0 to |rec|- dist do  
Step 10:     dpair   ← < rec[index], rec[index+dist]> 
Step 11:     if compare(dpair) then  
Step 12:     emit(dpair) 
Step 13:    lookAhead(dpair) 
Step 14:    end for   
Step 15:   end for   
Step 16:   end for  
Step 17:  end for  
Step 17: end procedure  

 
To process a loaded partition, PSNM first iterates overall record rank distances dist that are within the current 

window interval I. In Line 9, PSNM then iterates all records in the current partition to compare them to their dist-
neighbor. The comparison is executed using the compare( dpair) function in Line 11. If the compare function returns a 
true value, then a duplicate has been found and can be emitted. Then PSNM invokes the lookAhead(dpair) function, for 
progressively searching more number of duplicates in the neighborhood of the current duplicate.  

It is observed that most of the datasets contain many large duplicate clusters. This observation is used to find good 
comparison candidates earlier by progressively searching for duplicate clusters. Since the pair selection algorithm 
cannot estimate potential clusters from the outset, the ranking of comparison candidates needs to be optimized at 
runtime. Therefore, the duplicate detection algorithm can use the information about previously found duplicates to 
identify further promising record pairs. Hence, the algorithm uses a lookAhead strategy to dynamically adjust the 
comparison order based on intermediate results. As the records within the same cluster are very close to each other in 
the record order, if (i, j) has been identified as a duplicate, then the record pairs (i+1, j) and (i, j+1) have a high chance 
of being duplicates of the same cluster as well. If a duplicate (i; j) has been detected in Line 11, the optimized PSNM 
algorithm additionally calls the LookAhead(dpair) function. This function schedules the comparison of the record pairs 
(i+1; j) and (i; j+1) and immediately emits all duplicates that have been found in this way. Furthermore, if any of the 
look-ahead comparisons finds another duplicate, an extra look-ahead is recursively executed. By recursively iterating 
larger neighborhoods around duplicates, a complete cluster can be found at once. To avoid comparing records 
redundantly in different lookAheads or in a following iterations, the algorithm stores all comparisons, which have been 
handled within a look-ahead, in a temporary data structure. Since the look-ahead is a recursive function, it may 
schedule comparisons that are beyond the given maxWindow. Therefore, the maximum look-ahead distance is limited 
to maxWindow  

If the user do not terminate the detection process earlier, PSNM finishes when all intervals are processed and the 
maximum window size maxWindow is reached. 

 
B. Duplicate Count Strategy++ (DCS++) 

The major flaw of SNM is the use of fixed size window. If a window of smaller size is used, it may omit some real 
duplicates and if a window of larger size is used, it may perform many unnecessary comparisons. Duplicate Count 
Strategy (DCS++) overcome the use of fixed size window and comes out with windows that can be adapted 
dynamically. The Duplicate Count Strategy++ is an improvement of Sorted Neighborhood Method (SNM) and varies 
the size of the window based on the number of identified duplicates. As the window size is increased or decreased 
depending on the number of duplicates identified, the set of records that is being compared differs from the original 
SNM. The order in which the records are compared is also different from both the traditional SNM and PSNM. 
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Adapting the window size not only result in additional comparisons but also reduce the number of comparisons. 
However, adapting the window size should result in an overall higher effectiveness for a given efficiency or in a higher 
efficiency for a given effectiveness. Duplicate Count Strategy-Multi record increase (DCS++) uses the number of 
already detected duplicates as a signal for the window size [4]. If more duplicates of a record are found within its 
current window, the window is made larger. On the other hand, if no duplicate of a record is found within its window, 
then it assumes that no duplicates are there or the duplicates are very far away in the sorting order and works like SNM. 
In DCS++, records are sorted based on the sorting key. Then a window is created with initial window size w. The first 
record is compared with all other records in the current window. The window size is increased while the number of 
duplicates detected is greater than a threshold value. That is, for each detected duplicate, DCS++ add the next w-1 
records of that duplicate to the window. Then the window slides with the initial window size w. To save the no of 
comparisons, DCS++ skip windows for the duplicates detected. 

III.  EVALUATION AND PERFORMANCE COMPARISON 

 
The experiment has been done using the reduced real world dataset, CD-dataset containing 500 records. The CD-

dataset contains different records of audio CDs and music . The experiment uses a window of size 20 for SNM, 
DCS++, and PSNM. The Progressive SNM is compared with an adaptive method called Duplicate count strategy++ 
(DCS++) and traditional SNM and the experiment shows Progressive Sorted Neighborhood method reports most 
duplicates much earlier than traditional SNM and Adaptive DCS++. 

Time taken to find the most duplicates in Progressive Sorted Neighborhood Method is less than that of both the 
traditional SNM and adaptive DCS++. The results also shows that the adaptive approach can find more duplicates than 
both the progressive and traditional approach. This is because adaptive approach can dynamically vary the window size 
based on the number of identified duplicates. The results of the experiments are showed in fig.1. The X-axis indicate 
the time taken and Yaxis indicate the number of duplicates found by each method. In comparison to traditional SNM 
and its adaptive approach DCS++, progressive SNM satisfies improved early quality. For any arbitrary target time t at 
which results are needed, the output of a progressive SNM algorithm will be larger than the output of its corresponding 
traditional SNM algorithm. Target time t is typically smaller than the overall runtime of the traditional algorithm. 
PSNM also satisfies same eventual quality when compared to traditional SNM. Without early termination at t, if both a 
traditional algorithm and its progressive version finish their execution, they produce the same results. But when the 
adaptive version is also considered, it can find more results than the other two methods. 

 
 

Fig.1.  Performance Comparison of PSNM, Adaptive DCS++ and SNM 
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IV. CONCLUSION AND FUTURE WORK 
 

    As the data set is increasing in a large volume, the need for an efficient duplicate detection algorithms becoming 
more and more important. In this paper we have experimented and compared traditional Sorted Neighborhood Method 
and two of its extensions named PSNM and DCS++. The experiments shows that PSNM finds most duplicates much 
earlier than both the adaptive DCS++ as well as the traditional SNM. The PSNM algorithm improves the efficiency of 
duplicate detection task for situations with reduced execution time. It can reduce the average time after which an 
arbitrary duplicate is found and thereby detecting duplicates earlier. It also shows DCS++ finds more results than 
PSNM and SNM as DCS++ adapts the window size based on the number of detected duplicates.  
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