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ABSTRACT:  Next-generation orbital imaging spectrometers will generate unprecedented data volumes, demanding 

new methods to optimize storage and communication resources. Here, we demonstrate that onboard analysis can excise 

cloud-contaminated scenes, reducing data volumes while preserving science return. We calculate optimal cloud-

screening parameters in advance, exploiting stable radiometric calibration and foreknowledge of illumination and 

viewing geometry. Channel thresholds expressed in raw instrument values can b e then uploaded to the sensor where 

they execute in real time at gigabit-per-second (Gb/s) data rates. We present a decision theoretic method for setting 

these instrument parameters and characterize performance using a continuous three -year image archive from the 

“classic” Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-C). We then sim- ulate the system onboard the 

International Space Station, where it provides factor-of-two improvements in data volume with negligi- ble false 

positives. Finally, we describe a real-time demonstration onboard the AVIRIS Next Generation (AVIRIS-NG) flight 
plat- form during a recent science campaign. In this blind test, cloud screening is performed without error while 

keeping pace with instrument data rates. 

 
I. INTRODUCTION 

 
The detection of clouds in satellite imagery has a number of important applications in weather and climate 

studies. The presence of clouds can alter the energy budget of the Earth -atmosphere system through scattering and 

absorption of shortwave radiation and the absorption and re-emission of infrared radiation. The scattering and 

absorption characteristics of clouds vary with the microphysical properties of clouds, hence the cloud type. Thus, 

detecting the presence of clouds over a region in satellite imagery is important in order to derive atmospheric (e.g., 

optical depth, phase, temperature, etc.) that give insight into weather and climate processes. For many applications 

however, clouds are a contaminant whose presence interferes with retrieving atmosphere or surface information. In 

these cases, the detection of cloud contaminated pixels in satellite imagery is important to isolate cloud -free pixels used 

to retrieve atmospheric thermodynamic information (e.g., temperature and moisture information, ozone content, and 

even trace gas concentrations) or surface geophysical parameters (e.g., land and sea surface temperature, vegetation 

information, etc.) from cloudy ones. 

The ability to derive an accurate cloud mask from geostationary and polar orbiting satellite data under a 

variety of conditions has been a research topic since the launch of the first Earth observing satellite TIROS-1 in 1960. 

The limited success of some early studies (Coakley and Bretherton 1982, Rossow and Garder 1993, and those 

discussed by Goodman and Sellers 1988) suggests that the accurate detection of clouds in satellite imagery both during 

the day and at night is a challenging problem. In more recent work, the probability of detect ing clouds has been 

reported to exceed 90% (Saunders and Kriebel 1988, Merchant et al. 2005, Jedlovec et al. 2008, Reuter et al. 2009) but 

the performance varies seasonally, regionally, with time of day and retrieval technique. While traditionally both spa tial 

and spectral techniques have been employed to identify cloud contaminated pixels in polar orbiting and geostationary 

satellite data, sensor spatial resolution, the lack of surface – atmospheric boundary layer temperature contrast, and 

surface emissivity variations all present performance challenges to a given cloud detection approach. Thus, any one 

technique may not be best suited for all applications, but may perform quite well in a particular environment (usually 

the environment in which the algorithm was developed and tested). The key to the success of most of these algorithms 

lies in the selection of the thresholds for various spectral tests. In more robust algorithms, spatially and temporally 

varying thresholds, which better capture local atmospheric and surface effects, are used to improve their performance 

and broaden their application over algorithms with fixed thresholds for cloud tests. 

In this chapter, a review of several multispectral cloud detection techniques is presented. Emphasis is place d 

on techniques which use multispectral approaches applicable to a wide variety of current and future satellite sensors. 
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The detailed methodology used in several recent and widely used algorithms is highlighted. The performance of two 

cloud detection approaches is compared for the same observational conditions. 

 

II. LITERATURE SURVEY 
 

We focus on the VSWIR electromagnetic spectrum from 0.4–2.5 μm. Fig. 1 shows an example scene from the “classic” 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-C) with representative spectra of different materials and 

clouds. There are many studies of cloud detection in these wavelengths, 

 
Fig. 1. (Left) AVIRIS-C image f100521t02p05, a challenging scene that contains both clouds and snow. (Right) 

Spectra from bare terrain, snow, open water, and clouds, in units of dark-subtracted instrument digital 
numbers (DNs). 

 
and algorithms vary in their assumptions and complexity. “Classical” cloud screening applies threshold tests to spatial 

and spectral properties of the image. Pixels whose values fall outside valid ranges are marked as cloudy. For example, 

the MODIS algorithm compares selected visible and near- infrared (VNIR) and near-infrared (NIR) bands to predeter- 

mined thresholds and then aggregates the result in different combinations depending on land type. The algorithm uses a 

combination of 14 wavelengths and over 40 tests. This underscores the intrinsic difficulty of constructing a universal 
and complete cloud-screening procedure. Even more complex algorithms are possible. Some state- of-the-art cloud-

screening techniques estimate the optical path from absorption features such as the oxygen A band, as in Gómez-Chova 

et al. or Taylor et al. Thermal infrared (IR) channels can add brightness temperature information. Minnis et al. predict 

clear-sky brightness temperature values using ambient temperature and humidity and then excise pixels outside these 

intervals. Texture cues can be also used to recognize clouds by th eir high spatial heterogeneity. Martins et al. 

demonstrate that a simple spatial analysis, i.e., the standard deviation of VNIR isotropic reflectances in a 3×3 pixel 
window, reliably discriminates clouds from aerosol plumes over ocean scenes . 

 

B. Algorithm Requirements 
Previous systems try to screen all clouds to prevent con- tamination of later retrieval algorithms. In contrast, we aim to 

reduce the instrument data volume, which leads to distinct requirements. Completeness is not critical since the end user 

can perform more precise cloud screening later. Our algorithm can be conservative, abstaining from ambiguous 

classifications to prevent loss of science data. This requires some way to represent classification certainty. The 
Bayesian probabilistic model of Merchant et al. combines observational data with prio r predictions from atmospheric 

forecasts, leading to true probabilistic predictions. Onboard cloud screening must also satisfy strict computa - tional 

constraints. The algorithm must process all data collected by the spectrometer before it enters the flight recorder. In 

many cases, this requires that the algorithm run in instrument hardware such as a field -programmable gate array 

(FPGA), entailing additional design requirements .  

 
Fig. 2. Thresholds φ define an exclusion region to classify pixels as cloudy thresholds. 
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A cloud-screening testbed was installed in parallel with the regular AVIRIS-NG data system and operated 

without error during a recent science campaign. 

 

III. SYSTEM ANALYSIS 
 

3.1 PROBLEM IDENTIFICATION 
As mentioned in Section  pixel-level data necessarily has fewer dimensions than multi-pixel windows, which can make 

reliable detection of cloud more difficult. This is exacerbated in RGB when compared to multispectral data, because 

high albedo terrains (bright urban areas, for example) look the same in RGB as cloud pixels do, when they are be more 

separable in NIR and TIR bands. Although individual pixels can be misleading over certain terrains, texture often 

varies greatly between cloud and non-cloud. Therefore, if the system is to perform robustly in high albedo terrains, we 

need to extract spatial features around each pixel, as well as the individual pixel values themselves, and combine their 

information content to help distinguish cloud and non-cloud by their texture and surrounding context. Fusion of these 

different features is vital, because using only high-level features may make it difficult to learn simpler relationships 

based on colour and brightness. Using an FCN with residual connections in the style of U-net achieves these aims, 

whilst allowing the entire model to be optimised end-to-end during the training phase. 

 

3.2 EXISTING SYSTEM 
In Existing input, CloudFCN(Fully Convolutional Network) takes extended scenes from satellite imagery with arbitrary 

spatial dimensions. For each given spectral band combination (e.g., RGB) a different instance of the model is needed, 

however the only alteration made to the design is the number of input channels—no internal parameters are altered. 

The output of the model has the same spatial size as the input, but can take two distinct formats. When a pixel-by-pixel 

mask is desired, the final layer uses a softmax activation to classify each pixel as Clear or Clo udy. This is advantageous 

because it can be easily extended to multi-class problems (e.g., Clear vs. Cloud vs. Cloud Shadow). However, when 

cloud coverage estimation (as in the percentage of cloud cover over a whole scene) is the desired final product, we 

output a mask where each pixel has a value between 0 (clear) and 1 (thick cloud), and the cloudiness of a pixel is 

treated as a regression problem. We then take an average over the whole scene for the cloud coverage estimation. This 

format allows the model to make estimates for thin cloud as well as thick, and results in more accurate percentages 

through averaging. 

 

3.3 PROPOSED SYSTEM 
The proposed model has several desirable traits, which alleviate the issues that other methods exhibit. First, our design 

allows for flexible input formats, having no specific spectral requirements, and is able to ingest input images of 

different sizes. Second, we combine the simplest brightness and colour information with more abstract and complex 

features from the surrounding areas, creating a complementary set of features that exhibit the strengths of both pixel-

level techniques and convolutional ones. Lastly, the output format of the model, and attendant loss function, can be 

selected based on user needs, increasing the number of possible applications for the method, from cloud coverage 

estimation (in which a RMSE loss is used) to pixel-wise masking (with a categorical-crossentropy loss). 

 
IV. SYSTEM IMPLEMENTATION 

 
4.1 Lossy Algorithms: 
As with lossless algorithms, lossy algorithms also look for repeat pixel values and assign less data to common values. If 

we take a photo of a sunset over the sea, for example there are going to be groups of pixels with the same colour value, 

which can be reduced. Lossy algorithms tend to be more complex, as a result they achieve better results for bitmaps and 

can accommodate for the lose of data. The compressed file is an estimation of the original data.Other advantages of 

lossy compression is that it can reduce file sizes much more than lossless compression and you can determine how 

much compression can be applied. For example JPEG is a lossy format and GIF is lossless. With JPEG you can 

determine how much compression is applied, whereas with GIF you can't, it's set for you. Also JPEG can c ompress 

files much more than GIFs - JPEGs can reduce a file to up to 5% of its original size. One of the disadvantages of lossy 

compression is that if the compressed file keeps being compressed, then the quality will degraded drastically. The 

diagram alongside illustrates this process. 

MERIS/AATSR cloud-screening algorithm is being implemented as an independent module AATSR(Advanced 

Along Track Scanning Radiometer) and MERIS (Medium Resolution Imaging Spectrometer) 
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The proposed cloud-screening scheme relies on the extraction of meaningful physical features (e.g. brightness, 

whiteness, temperature) that are combined with atmospheric absorption features at specific spectral band locations 

(oxygen and water vapour absorptions). The cloud-screening algorithm should be capable of detecting clouds 

accurately, but also and very importantly, it provides a cloud probability or cloud contamination index per pixel rather 

than binary flags. This added value product allows the user to obtain an adjustable cloud mask depending on the further 

processing stages and final use of the image. 

 

4.2 Color Feature Extraction 

Color feature is extracted by Color Histogram and Color Descriptor. The Color histogram specifies the colorpixel 

distribution in an image. Color histogram uses two types of color space that are RGB, HSV. ColorHistogram (CH), 

contains occurrences of each color obtained by counting all image pixels having that color. Each pixel is associated to a 

specific histogram bin only on the basis of its own color, and color similarity across different bins or color dissimilarity 

in the same bin is not taken into account. Since any pixel in the image can be described by three components in a 

certain color space (for instance, red, green and blue components in RGB space o r hue, saturation and value in HSV 

space), a histogram, i.e., the distribution of the number of pixels for each quantized bin, can be defined  for each 

component. Color descriptor consists the color expectancy, color variance and color skewness. Color expec tancy is the 

average or mean of intensity in image. Color variance is the square root of the standard deviation. Color  

skewness is a measure of the asymmetry of the probability distribution of a real valued random variable. Two types of 

skewness are Positive skewness and Negative skewness.   

 

4.3 Texture Feature Extraction 
An image texture is a set of metrics calculated in image processing designed to quantify the perceived textureof an 

image. Image Texture gives us information about the spatial arrangemen t of color or intensities in an image or selected 

region of an image. Texture analysis attempts to quantify intuitive qualities  described by terms such as rough, smooth, 

silky, or bumpy as a function of the spatial variation in pixel intensities. In this s ense, thoroughness or bumpiness refers 

to variations in the intensity values, or gray levels. 

 

4.4 Comparison with Other Target Detection Methods  
In order to evaluate the results of the proposed detection approach, three common target detection techniques,  including 

ACE, CEM, and MF, were implemented on the Meteosat multispectral images. The color composite of the visible and 

near infrared spectral bands (VIS: 0.8, VIS: 0.6, IR: 8.7 μm) is shown in  Figure 2. 

After introducing the multispectral image in Figure 2 and selecting the ROIs manually (from two specific cloud and no-

cloud targets), the three above-mentioned detection algorithms were implemented. For this purpose, the average cloud 

spectrum based on the selected ROIs in cloudy regions was first produced. The mean cloud signal obtained from the 

selected cloudy ROIs is shown in Figure 13. This spectrum is used as training spectra, which will be used as input in 

the detection models. By the way, it should be mentioned that a minimum noise fraction (MNF) t ransform was also 

implemented on the raw multispectral image to reduce the spectral noise. Afterwards, the set of detection algorithms 

were performed respectively on the images. Figure 14 represents the resulting detection outputs from these algorithms 

in a smaller subset of our study area. 
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Figure 13. Averaged cloud spectrum obtained from the mean value of the cloud Regions Of Interest (ROI) 

visually selected on the Meteosat image of the same area. 
 

V. CONCLUS ION 
 

This paper has described a novel method for cloud screening onboard spacecraft at Gb/s data rates. We perform the 

most challenging computations on the ground, exploiting foreknowl- edge of observation geometry and surface type to 

predict the brightness of terrain pixels and cloud pixels. We calculate optimal thresholds in uncalibrated instrument 

values that can be uploaded for real-time execution by the flight system.. One could always design a more complex 

cloud classifier to disambiguate the most difficult pixels and consequently achieve a slight improvement in data volume 

reduction. However, our simple algorithm already achieves better than 90% of the theoretical maximum making it 

sufficient for many applica- tions and a useful point on the design trade space. At a time when communications and 

storage subsystems struggle under increasing data rates, the potential for onboard cloud screening has remained 

relatively unstudied. Mission designers should bear in mind that a few simple design considerations, i.e., the 

introduction of channel and aggregation thresholds, can enable factor-of-two reductions in data volume. 

 
VI. FUTURE ENHANCEMENT 

 
Future work could seek alternative representations that scale better with dimensionality. A more promising approach 

would be to incorporate additional domain knowledge into the state vector. One could condition thresholds on very 

specific land types or on real-time cloud products like the GOES cloud mask. Preprocessing and feature extraction 

could also improve performance. For example, one could compute spectral derivatives; sums, differences, or ratios of 

channels; or continuum-relative absorption band depths [47]. Such spectral features could potentially improve results at 

a low computational cost. 
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