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ABSTRACT: In this paper, we consider the estimation and prediction of the Generalized Power Weibull, i.e., GPW 

model under Bayesian framework. The computation of MLEs, approximate variances, and confidence intervals of the 

parameters for the GPW model based on a complete sample are performed. For the Bayesian analysis we have assumed 

the uniform prior for the scale parameter and gamma priors for shape parameters.  Then the Gibbs sampling technique 

is applied to obtain the posterior samples using OpenBUGS software. Bayesian estimators of the parameters, posterior 

variances, and credible intervals are obtained using posterior samples. We have obtained the Bayes estimates of the 

hazard and reliability functions, and their probability intervals are also presented. We have applied the predictive check 

method to discuss the issue of model compatibility. All computational tools are developed in OpenBUGS and R 

software. A real data set is considered for illustration of the proposed Bayesian approach. 
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I. INTRODUCTION 

The Power Generalize Weibull family is another extension of the Weibull family. This family which presented at 

first by Bagdonavicius and Nikulin [1] contains four shapes of the hazard function and is most used in reliability and 

survival analysis domain. This family is used often for constructing Accelerated Failures Times (AFT) models, 

describing dependence of the lifetime distribution on the explanatory variables. It does not only contain models with 

unimodal and bathtub hazard shape, but also allows for a broader class of monotone hazard rate. The GPW family can 

be used as a possible alternative to the Exponentiated Weibull family for modeling lifetime data. Nikulin and Haghighi 

[2] discussed its suitability for the cancer censored data. Lai [3] correctly named the model as Generalized Power 

Weibull. Lai [3]and Nikulin and Wu [4] provide an excellent review of the Generalized Power Weibull (GPW) model.  

II. RELATED WORK 

In this paper, we consider the estimation and prediction of the Generalized Power Weibull (GPW) model under 

Bayesian framework. The computation of MLEs, approximate variances, and confidence intervals of the parameters for 

the GPW model based on a complete sample are performed. Then the Gibbs sampling technique is applied to construct 

the Bayesian estimators of the parameters, posterior variances, and credible intervals based on the assumption that the 

prior of the scale parameter is uniform density function and priors of the shape parameters are gamma density 

functions. We have obtained the Bayes estimates of the hazard and reliability functions, and their probability intervals 

are also presented. We have applied the predictive check method to discuss the issue of model compatibility.  All 

computational tools are developed in OpenBUGS and R software. A real data set is considered for illustration of the 

proposed Bayesian approach. 

III. MODEL ANALYSIS 

A.Cumulative distribution function: 
The cumulative distribution function of GPW model with three parameters is given by 

  ; , , 1 exp 1 1 ;  0, 0, 0, 0,

    
          
     

x
F x x




     


  (3.1) 

 where  ,   and   are the parameters, [3]. The GPW distribution will be denoted by ( , , )GPW    .  

The particular cases of the Power Generalized Weibull model are: 

 1  : the family of Weibull model; 
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 1   and 1  : the family of Exponential model. 

B.  Probability density function: 
The probability density function(PDF) of GPW model with three parameters is given by 

 

1
1

; , , 1 exp 1 1 ,


             

            
             

x x x
f x

   


  
   

  (3.2) 

where ( , , )> 0    and 0x  . 

Differentiating   f x  with respect to x , gives 

     
    

 
 

11
1 1

1
1



 
   

   
 

 

'
x

f x x x f x .
x








  
 

 
 

If  1   then the  f x  is non positive implying that the p.d.f’s of all GPW model with  1   are monotone 

decreasing.  On the other hand if 1   then   0f x  .Hence for 1  , the power Generalized Weibull p.d.f’s are 

unimodal. The shapes of the tails of the densities of the power Generalized Weibull family can be understood by 

examining the limit of  f x  as 0x   and  x  . We have the following: 

(i) If 1  , then   0f x  as 0x   and x . 

(ii) If 1  , then  f x



 as 0x  , and   0f x  as x , hence the p.d.f. is high-tailed at the left end, 

similar to that of the Exponential model. 

(iii) If 1  , then   f x   as 0x  , and    0f x   as x , hence the family has a high left tail asymptote 

at 0x   . 

 

Figure 1    The probability density function of GPW model for 1 and different values of and   

 

The R functions dgen.pow.weib()  and pgen.pow.weib() given in [6] can be used for the computation of pdf and 

cdf respectively. Some of the typical GPW density functions for different values of   for   are depicted in Figure 1. 

which is clearly shows that the density function of the GPW model can take different shapes. 
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C.   The Reliability/Survival function: 
The reliability/survival function of GPW model with three parameters is 

  exp 1 1 ; 0, 0, 0, 0.
    

         
     

x
R x x




  


  (3.3) 

 The R function sgen.pow.weib()given in [6] which computes the reliability/ survival function. 

D.   The hazard rate function: 
The hazard rate function (HRF) of GPW model with three parameters is 

 

1
1

1


      

     
     

x x
h x; , , .

 


  
  

  (3.4) 

The hazard rate has nice and flexible properties[2]. Depending on the values of the parameters, ( )h x  can be 

constant, monotone (increasing, decreasing), unimodal or bathtub shaped. 

 
Figure 2    The hazard rate function of GPW model for 1   and different values of. and  . 

More specifically, it has been shown that the hazard rate curve is 

(a) monotone increasing if either 1   and 1   or 1   and 1  ; 

(b) monotone decreasing if either 0 1   and 1   or 0 1   and 1  ; 

(c) unimodal (inverted bathtub shaped) if 1   and 0 1  ; 

(d) bathtub shaped 0 1    and 1  . 

 Some of the typical GPW hazard functions for different values of and   for 1   are depicted in Figure 5.2. It 

is clear from the Figure 5.2 that the hazard function of the GPW model can take different shapes including the 

unimodel (upside down bathtub). The associated R function hgen.pow.weib()given in [6].  Figure 5.2 exhibits the 

different hazard rate functions for GPW model. 

E.    The Quantile function: 

 The quantile function of GPW model with three parameters is given by  

  
1

1
1 log 1 1 ; 0 1.px p p




           (3.5) 

 For the computation of quantiles the R function qgen.pow.weib(), given in [6] can be used.   
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F.   The random deviate generation: 

 The  random deviate can be generated from ( , , )GPW     by 

  
1

1
1 log 1 1 ;0 1,x u u




               (3.6) 

where u has the (0,1)U  model. The R function rgen.pow.weib(), given in [6] the random deviate from 

( , , )GPW    .For model choice based on information criterion, the values of AIC and BIC can be computed using 

the R function abic.gen.pow.weib()given in [6]. 

IV. MLE AND INFORMATION MATRIX 

In this section, we discuss the maximum likelihood estimators (MLE’s) of the GPW model and their asymptotic 

properties to obtain approximate confidence intervals based on MLE’s. 

Let 1( , , )nx x x  be a random sample of size n from ( , , )GPW    , then the log-likelihood function 

( , , | )x    can be written as;   

   

      

1

1 1

, , | log log log 1 log

                      1 log 1 1



 

    

      
 



 

n

i

i

n n

i i

i i

x n n n x

x n x


 

       

  

 (4.1) 

 Differentiating with respect to  ,   and  , we have 

 
   

  
      

1

1 1 1

log
log log 1 1 log 0

1



  


       

 
  

n n n
i i

i i i i

i i i
i

x xn
n x x x x

x




 



 
     

  
 

 

   

  
    

1

1 1

1
1 0

1



 


     

 
 

n n
i

i i

i i
i

xn
x x

x




 



   
 

   
 

  

and 

.
        

1 1

log 1 1 log 1 0
 


      


 

n n

i i i

i i

n
x x x


  

  
   

 Therefore, to obtain the MLE’s of  ,   and  , we can maximize (4.1) directly with respect to  ,   and  or 

setting these equations to zero and solving them simultaneously yield the maximum likelihood estimates (MLEs) of the 

model parameters. Numerical methods can be used to obtain the ML estimates of the parameters. For example, the 

Newton-Raphson iterative technique could be applied to solve the likelihood equations numerically. 

Let us denote the parameter vector by  , ,     and the corresponding MLE of  as  ˆ ˆˆ ˆ, ,    , then 

the asymptotic normality results in 

   
1

3ˆ 0, ( )N I  
    

 
 (4.2)  

where ( )I  is the Fisher’s information matrix given by 
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2 2 2

2

2 2 2

2

2 2 2

2

( )

E E E

I E E E

E E E

   


   

    

        
      

              
 

        
                      

 
        
                     

     (4.3) 

 In practice, it is useless that the MLE has asymptotic variance  
1

( )I 


because we do not know  .  Hence, we 

approximate the asymptotic variance by “plugging in” the estimated value of the parameters.  The common procedure 

is to use observed Fisher information matrix ˆ( )O   (as an estimate of the information matrix ( )I  ) given by 

2 2 2

2

2 2 2

ˆ2

2 2 2

2
ˆ ˆˆ( , , )

ˆ( ) ( ) 

   
 

    
 

      
    
 
   
 
     

O H  

  

   

 
   

    

  (4.4) 

 where H is the Hessian matrix,   , ,     and  ˆ ˆˆ ˆ, ,    . The Newton-Raphson algorithm to maximize the 

likelihood produces the observed information matrix. Therefore, the variance-covariance matrix is given by 

 
1

ˆ

ˆ ˆˆ ˆ ˆ( ) cov( , ) cov( , )

ˆ ˆ ˆ ˆˆ( ) cov( , ) ( ) cov( , )

ˆ ˆ ˆ ˆˆcov( , ) cov( , ) ( )





 
 
  
 
 
 

var

H var

var

 

    

     

    

   (4.5) 

 Hence, from the asymptotic normality of MLEs, approximate 100(1 )%  confidence intervals for  ,   and 

can be constructed as 

 /2ˆ ˆ( )z var  , /2
ˆ ˆ( )z var     and /2

ˆ ˆ( )z var   (4.6) 

where /2z  is the upper percentile of standard normal variate. 

 

A.  Bayesian Model Formulation 

 The Bayesian model is constructed by specifying the prior distributions for the model parameters  ,  & and 

then multiplying with the likelihood function to obtain the posterior distribution function. 

 

 Probability Model :  ( | , , )f x     

 Prior distribution : ( , , )p     

 Data : 1( , , ) nx x x  

Given a set of data 1( , , )nx x x , the likelihood function is 

 

1

1

1 1

, , | 1 exp 1 1



 

 

                                             

 
n n

n n n i i

i

i i

x x
L x x

  

      
 

 

Denote the prior distribution of  ,   and  as ( , , )p    . The joint posterior is 

         p , , | x L , , | x p p p          

 

http://www.ijircce.com/


International Journal of Innovative Research in Computer and Communication Engineering 

                        | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | Impact Factor: 7.488 | 

                 || Volume 8, Issue 10, October 2020 || 

IJIRCCE©2020                                                         |     An ISO 9001:2008 Certified Journal   |                                                 4112 

 

 

B.  Prior distributions: 

 We assume the independent uniform priors for  2 2~ U a ,b  and gamma priors for  1 1~ G a ,b  and 

 3 3~ G a ,b  as 

  
 

1

1 111

1 1

1

; 0, 0, 0
a

a bb
p e a b

a

   
   


  ,      2 2

2 2

1
;p a b

b a
   


 

and 

 
 

3

3 313

3 3

3

0 0 0
a

a bb
p e ; ,a ,b .

a

   
   


 

C.  Posterior distribution: 
Combining the likelihood function with the prior via Bayes' theorem yields the posterior up to proportionality as 

            

31

3 31 1

1
111 31

1 1 2 2 1 3

1
, , | 1 exp 1 1


   

 

     
                    

 
aan n

a ba bn n n

i i i

i i

bb
p x x x x e e

b a a a

 
            

or,
 

       31

1
11 1

1 3

1 1

, , | 1 exp 1 1


    

 

    
            

 
n n

n an a n

i i i

i i

p x x x x b b
 

             

The posterior is obviously complicated and no close form inferences appear possible. We, therefore, propose to 

consider MCMC methods to simulate samples from the posterior so that sample-based inferences can be easily drawn.  

Markov chain Monte Carlo draws samples by running a cleverly constructed Markov chain that eventually converges to 

the target distribution (called stationary or equilibrium) which, in our case, is the posterior distribution ( , , | )p x   . 

There are many ways of constructing these chains, but all of them, including the Gibbs sampler [7, 8, 9, 10] 

D.  Gibbs Sampler : Algorithm 

 For Gibbs sampler implementation, the full conditionals for  ,   and  upto proportionality can be specified as 

 

(i) Full conditional distribution of the parameter    for given  ,   and x  

         1

1
1 1

1

1 1

| , , 1 exp 1 1


  

 

    
           

 
n n

n a

i i i

i i

p x x x x b
 

         

(ii) Full conditional distribution of the parameter   for given ,   and x  

        
1

| , , 1 exp 1 1






   
        


n

n

i i

i n

p x x x
 

        

 

(iii) Full conditional distribution of the parameter   for given ,   and x  

        3

1
1

3

1

| , , 1 exp 1 1


 



   
         


n

n a

i i

i

p x x x b
 

 
         

We shall use OpenBUGS software to obtain posterior samples. As the GPW model is not available in OpenBUGS, 

it requires incorporation of a module in ReliaBUGS [12] and [13] subsystem of OpenBUGS GPW model.A module 

dgen.pow.weib(alpha, beta, theta)is written in Component Pascal for GPW model, given [12], to perform full Bayesian 

analysis in OpenBUGS using the method described in 14] and [15]. It is important to note that this module can be used 

for any set of suitable priors of the model parameters. Almost all aspects of the model in Bayesian framework can be 

studied using the developed module dgen.pow.weib(alpha, beta, theta) 

E.  Gibbs Sampler : Implementation 

1. Select an initial value  (0) (0) (0) (0) , ,     to start the chain. 

2. Suppose at the i
th

-step,   , ,    takes the value  ( ) ( ) ( ) ( ) , ,i i i i     then from full conditionals, we 

generate 

( 1)i 
from  ( ) ( )| , ,i ip x    
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( 1)i  from  ( 1) ( )| , ,i ip x       and 

( 1)i  from  ( 1) ( 1)| , ,i ip x   
. 

3. This completes a transition from 
( )i to 

( 1)i 
 

4. Repeat Step 2, N  times. 

F.  MCMC output : Posterior sample 

It is well known that rapid convergence is facilitated by choosing appropriate starting values. In order to guarantee 

the convergence and to remove the effect of the selection of initial value, the first ‘B’ simulated variates are discarded 

[11].  Also to reduce the effect of autocorrelation, select a sampling lag L > 1 after which the corresponding 

autocorrelation are low.  Consider  (1) ( ) ( ), , , ,j M    as the MCMC output (posterior sample) for the posterior 

analysis 

 ( ) ( ) ( ) ( ) , , ; 1,2, ,j j j j j M     . 

Thus, MCMC output is referred as the sample after removing the initial iterations (produced during the burn-in 

period) and considering the appropriate lag, whichcan be used to develop the Bayesian inference. 

The Bayes estimates of    , ,    , under the square error loss (SEL) function, are given by 

( ) ( ) ( )

1 1 1

1 1 1ˆ ˆˆ ;  ;  
  

    
M M M

j j j

j j jM M M
       

 The Bayes estimates under absolute and zero-one loss functions are posterior median and mode, respectively. 

V. DATA ANALYSIS 

 A real data set is considered for illustration of the proposed methodology for GPW model. The data below are from 

an accelerated life test of 59 conductors. Failure times are in hours, and there are no censored observations [16]. 

A. Classical Analysis 

A.1    Exploratory data analysis (EDA) 

 The aim of data analysis is to gain information from the data. The modern statistical data analysis tools include the 

exploratory data analysis.  Exploratory data analysis is a set of methods to display and summarize the data: 

 Displaying the data in a graph that shows overall patterns and unusual observations (boxplot, histogram, density 

curve etc.) 

 Computing descriptive statistics that summarize specific aspects of the data (centre, spread etc.). 

 

Figure 3  The empirical scaled TTT transform of the data set 
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In the above Figure 3, we have plotted the empirical version of the scaled TTT transform of the data set in Figure3. 

Since the empirical version of the scaled TTT transform is concave, it indicates that the hazard function is increasing. 

A.2   MLE Computation of GPW model 

The maximum likelihood estimates (MLEs) are obtained by direct maximization of the log-likelihood function

( , , )   given in (3.1). The advantage of this procedure is that it runs immediately using existing statistical packages 

such as R[17]. We consider the software R through the Quasi-Newton algorithm [18] to compute the MLEs. 
 

Table 1   MLE, standard error and 95% confidence interval 

 

 

 

 

 

 

 

 

From Figure 3 we show that the likelihood equations have a unique solution. The Table 1 shows the ML estimates, standard error 

(SE) and 95 % confidence Intervals for parameters , and   . The maximized value of loglikelihood is  

ˆ ˆˆ( , , ) 111.1907.      
 

A.3    Process for inspecting the validity of GPW model 
 To check the validity of the model we compute the Kolmogorov-Smirnov (KS) distance between the empirical 

distribution function and the fitted distribution function when the parameters are obtained by method of maximum 

likelihood is 0.0619 and the corresponding p-value is 0.9669.   

 
Figure 4. The graph of empirical and fitted model function. 

 We have used the R function ks.gen.pow.weib( ), given in [12]. We have plotted the empirical distribution function 

and the fitted distribution function in Figure 4 which shows very clear that the fitted GPW model provides nice to the 

given data. 

B. Bayesian Analysis  

B.1 OpenBUGS script for the Bayesian analysis of GPW model 

model 

 { 

         for( i in 1 : N )  

         { 

  x[i] ~ dgen.pow.weib(alpha, beta, theta)   

  reliability[i] <- R(x[i], x[i])  

Parameter MLE Std. Error 95%ConfidenceInterval 

alpha 6.7548 1.6249 (3.5700, 9.9396) 

beta 6.0953 0.5879 (4.9430, 7.2476) 

theta 0.4344 0.1817 (0.0783, 0.7905) 
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  f[i] <- density(x[i], x[i])     

  hrf[i] <- hrf(x[i], x[i])     

  ep[i] <- (i - 0.5)  / N       

  x.new[i] <- beta*pow(pow(1.0-log(1.0-ep[i]),1/theta) -1, 1/alpha) 

 }   

 # Prior distributions of the model parameters  

  alpha ~ dgamma(0.001, 0.001) 

  theta ~ dgamma(0.001, 0.001) 

  beta~ dunif(0, 20) 

 } 

Data 

 list(N=59, x =c(2.997, 4.137, ..., 10.491, 11.038)) 

Initial values  

 list(alpha=1.0, beta=0.5, theta=0.1)    # Chain1 

 list(alpha=5.0, beta= 5.5, theta=0.5)   # Chain2 

 

We assume the independent uniform prior for  2 2~ ,  U a b and gamma priors for  ~ ,  1 1G a b and  ~ ,  3 3G a b

with hyper parameter values 

1 1 2 2 3 3( 0.001, 0.001),( 0, 20.0) and ( 0.001, 0.001).      a b a b a b  

We run the model to generate two Markov Chains at the length of 30,000 with different starting points of the 

parameters[19]. We have chosen initial values  1.0,  0.5, 0.1     for the first chain and  5.0,  5.5, 0.5    

for the second chain. The convergence is monitored using trace and ergodic mean plots, we find that the Markov Chain 

converge together after approximately 3000 observations. Therefore, burn-in of 5000 samples is more than enough to 

erase the effect of starting point(initial values). Finally, samples of size 5000 are formed from the posterior by picking 

up equally spaced every fifth outcome (to minimize the auto correlation among the generated deviates.), i.e. thin=5, 

starting from 5001 [20].  

 Therefore, we have the posterior sample  ( ) ( ) ( )
1 1 1, , ; 1, ,5000

j j j
j    from chain 1 and 

 ( ) ( ) ( )
2 2 2, , ; 1, ,5000

j j j
j    from chain 2.  

 The given numerical summary is presented for both the chain 1 and chain 2 respectively [21]. 

B.2   Numerical Summary  

 We have considered various quantities of interest and their numerical values based on MCMC sample of posterior 

characteristics for GPW model.  The MCMC results of the posterior mean, mode, standard deviation(SD), first quartile, 

median, third quartile, 2.5
th

 percentile,  97.5
th

 percentile, skewness, 95% symmetric and HPD credible intervals of the 

parameters ,   and  are displayed in Table 2 and Table 3. 

Table 2. Numerical summaries based on MCMC sample of posterior characteristics for GPW model 

Characteristics alpha beta theta 

Mean 6.4377 6.5757 0.6551 

Standard  Deviation 1.6764 1.2831 0.7386 

First Quartile (Q1) 5.2388 5.8430 0.3615 

Median 6.2565 6.2910 0.4935 

Third Quartile (Q3) 7.4630 6.8993 0.7027 

Mode 5.7480 6.0112 0.3880 

Skewness 0.6488 3.4364 8.7652 

Kurtosis 0.5784 19.6397 113.9781 
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Table 3.  95%  symmetric and HPD credible intervals 

Parameter Symmetric Credible Interval HPD Credible Interval 

alpha (3.6448 10.24) (3.32 9.616) 

lambda (5.2330, 9.9132) (4.893 8.744) 

theta (0.2184, 2.1152) (0.1452 1.473) 

 

 

C.  Comparison with MLE 

  We have used graphical method for the comparison of Bayes estimates with ML estimates. In Figure 5, the density 

functions ˆ ˆˆ( ; , , )f x     using MLEs and Bayesian estimates (the posterior means), computed via MCMC samples [22], 

are plotted .It is evident from the above said figure that the MLEs and the Bayes estimates are quite close and fit the data 

very well. 

 
Figure 5   The density functions using ML and Bayesian estimates 

 

D. Posterior Predictive Checks for Model compatibility 

 A natural way to assess the fit of a Bayesian model is to look at how well the predictions from the model agree 

with the observed data. We do this by comparing the posterior predictive simulations with the data[22]. The MCMC 

results of the posterior mean, median, mode of smallest and largest  (1) (2) (58) (59)and, ,X X X X  and (10)X  are displayed 

in Table 4. 

Table 4.  Posterior characteristics 

 Observed Mode Mean Median 

X(1) 2.997 3.365 3.151 3.227 

X(2) 4.137 4.043 3.794 3.862 

X(10) 5.459 5.357 5.315 5.335 

X(58) 10.491 10.155 10.352 10.270 

X(59) 11.038 10.838 11.120 11.010 

 Figure 6 exhibits graphical posterior predictive check of the model adequacy, solid line( - ) represents the posterior 

median and dashed lines(...) represent lower and upper bounds of 95% probability intervals, observed data is 

superimposed. The predictive data reflect the expected observations after replicating the experiment in future, having 

already observed x and assuming that the adopted model is true 

http://www.ijircce.com/


International Journal of Innovative Research in Computer and Communication Engineering 

                        | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | Impact Factor: 7.488 | 

                 || Volume 8, Issue 10, October 2020 || 

IJIRCCE©2020                                                         |     An ISO 9001:2008 Certified Journal   |                                                 4117 

 

 

 

Figure 6.  Graphical posterior predictive check of the model adequacy. 

VI. CONCLUSION 

 We have proposed GPW model and discussed some of its properties using R software. We have obtained the 

MLE of the parameters and their asymptotic probability intervals. Then, we have discussed the Markov chain Monte 

Carlo (MCMC) method to compute the Bayesian estimates of the parameters, hazard and reliability functions of GPW 

model based on a complete sample. We have obtained the probability intervals for parameters, hazard and reliability 

functions. We have presented the model compatibility via the posterior predictive check method.  We have applied the 

developed techniques on a real data set. Thus, the tools developed can be applied for full Bayesian analysis of GPW 

model.  
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