

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0309068 8648

 Measuring Code Quality to Improve
Specification Mining

Roshan Omprakash Deshmukh, Prof. Umesh Kulkarni

M.E. Student, Dept. of Computer Engineering, ARMIET, Shahapur, India

Assistant Professor, Dept. of CMPN, VIT, Wadala, India

ABSTRACT: Every software Industry requires the quality of code. Formal specifications are mathematically based
techniques whose purposes are to help with the implementation of systems and software. They are used to describe a
system, to analyze its behavior, and to aid in its design by verifying key properties of interest through rigorous and
effective reasoning tools. These specifications are formal in the sense that they have syntax, their semantics fall within
one domain, and they are able to be used to infer useful information.

 Measuring Code Quality to Improve Specification Mining is used to create a set of design principles for code
modularization and produce set of metrics that characterize software in relation to those principles. Some metrics are
structural, architectural, and notions. The structural metrics refer to inter module-coupling based notions. The
architectural metrics refer the horizontal layering of modules in large software systems. Here we are using three types
of contributions coupling, cohesion, and complexity of metrics to modularize the software.

 These contributions measure were primarily at the level of how the individual classes were designed from the
standpoint of how many methods were packed into the classes, the depth of the inheritance tree, the inheritance fan-out,
coupling between objects created by one object invoking a method on another object.

 Other contributions that have also used function call dependencies to characterize software modularization.
Modularization algorithm is based on the combination of coupling and cohesion metrics. This is used to find
modularization quality.

KEYWORDS: Specification mining, machine learning, software modularization, code metrics, program understanding

I. INTRODUCTION

 Incorrect and buggy behavior in deployed software costs up to $70 billion each year in the US [7]. Thus
debugging, testing, maintaining, optimizing, refactoring, and documenting software, while time-consuming, remain
critically important.
 Such maintenance is reported to consume up to 90% of the total cost of software projects.A key maintenance
concern is incomplete documentation up to 60% of maintenance time is spent studying existing software. Human
processes and especially tool support for finding and fixing errors in deployed software often require formal
specifications of correct program behavior; it is difficult to repair a coding error without a clear notion of what
“correct” program behavior entails. Unfortunately,

while low-level program annotations are becoming more and more prevalent, comprehensive formal specifications
remain rare.

 Many large, preexisting software projects are not yet formally specified. Formal program specifications are
difficult for humans to construct .and incorrect specifications are difficult for humans to debug and modify.
Accordingly, researchers have developed techniques to automatically infer specifications from program source code or
execution traces [2]. These techniques typically produce specifications in the form of finite state machines that describe
legal sequences of program behaviors.

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0309068 8649

Fig.1.Block Diagram

A.MINING CHARACTERISTICS

 This section shows the underlying concepts of mining techniques and their limitations which encourage the
researchers to step into incorporating code quality metrics. Specification mining techniques produces specifications but
still they have high false positive rates. The Comparison between most of these approaches is provided in the Table 1.
 In WN miner [6] the specification mining was motivated by the observations of run-time error handling
mistakes. In other approaches examining such mistakes, the code frequently violates simple API specifications in
exceptional situations. Despite the proliferation of specification-mining research, there is not much report on issues
pertaining to the quality of specification miners. This technique is same as that of Engler et al. but is based on
assumptions about run time errors, chooses candidate event pairs differently, presents significantly fewer candidate
specifications and ranks presented candidates differently.

 In a normal Table1. A Comparison study execution, events „a’ and „b’ may be separated by other events and
difficult to discern as a pair. After an error has occurred, however, the cleanup code is usually much less cluttered and
contains only operations required for correctness. The candidate specifications are filtered using varied criteria such as
exceptional control flow, one error, data path etc.

 This highlights the practical importance of the algorithmic assumptions, in particular the use of exceptional
control flow. It can serve as a requirement for acceptance. It can even assist inspections by helping to target effort at
parts of a program that may need improvement. Though this miner select specifications from software artifacts and
finds per-program specifications for error detection, it does not have profound results in bug finding. Strauss, ECC
and WN technique were all good at yielding specifications that found bugs. The WN technique found all bugs reported
by other techniques on these benchmarks and did so with the fewest false positives.

B.QUALITY METRICS:

 Code metrics like LOC and Cyclomatic Complexity examines the internal complexity of a procedure whereas
this structure metrics examines the relationship between a section of code and the rest of the system. Process oriented
metrics are used through the different phases of the software life cycle. Measurement on quality should concentrate on
the early phases in the life cycle to improve the quality of software and decrease of development and maintenance
costs.

Input code
for the
Quality
Measuring

Quality
Measure
Software

Output
with
Percenta
ge of
Input
Code

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0309068 8650

Defects must be tracked to the release origin which is the portion of the code that contains the defects and at what
release the portion was added, changed, or enhanced.When calculating the defect rate of the entire product, all defects
are used; when calculating the defect rate for the new and changed code, only defects of the release origin of the new
and changed code are included.

On the one hand, the process quality metrics simply means tracking defect arrival during formal machine testing for
some organizations. On the other hand, some software organizations with well-established software metrics programs
cover various parameters in each phase of the development cycle.

II. LITERATURE SURVEY

Whaley et al. propose a static miner [1] that produces a single multi-state specification for library code. The JIST[2]
miner refines Whaley et al.’s static approach by using techniques from software model checking to rule out infeasible
paths. Gabel and Su [3] extend Perracotta using BDDs, and show both that two-state mining is NP-complete and some
specifications cannot be created by composing two-state specifications. Lo et al. use learned temporal properties, such

Miner Used Features Remarks
Engler et al. Use two state

temporal
properties.

High false
positive rates

Whaley et al. Produces Single
multi state
specification

Human
intervention

Strauss Mainly focused
on machine
learning to
learn a Single
specification
from traces

Use of single
specification is
not sufficient

JIST Refines Whaley
et al. technique
to mainly
disregard
infeasible paths

Handles only
simple subset of
Java

WN miner Selecting
specifications
from software
artifacts

Does not have
profound
results in
finding bugs

Claire approach Use
measurements
of
trustworthiness
of source code
to mine
specifications

Does not give
adequate results
over precision.

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0309068 8651

as those mined in this article, to steer the learning of finite state machine behavior models [4].Shoham et al.[5] mine by
using abstract interpretation, where the abstract values are specifications

III. PROPOSED WORK:

 Proposed system is developed using Object oriented software system. Create a set design principles for code
modularization and produce set of metrics. Modularization quality is calculating using metrics such as structural,
architectural and notions.
There are three contributions such as coupling, cohesion and complexity metrics to modularize the software. Our
proposed metrics seek to characterize a body of software according to the enunciated principles. Provide two types of
experiments to validate the metrics

FEATURES OF PROPOSED SYSTEM

The proposed system is having the following features
 *Easy to identify the project quality.
 *The quality is based on the metrics such as structural, architectural and notion.
 *Reorganization is not difficult.
 *The total number of line, function call, and module are easy to calculate.

A. IMPLEMENTATION:

MODULES

 Solution strategy defines the way being used for solving the problem. The project is having four major
modules:

 *Source Code Import And Partition
 *Module Count and Function Call Calculation
 *Metric Calculation
 *Report Generation

Source Code Import & Partition
 User or tester will import file/project to our tool. The tool will partition the source code by its self.

Module Count & function Call Calculation
 In this module the tool will find the size/total number of lines in the project. After that calculate what are the
functions/methods are involved in this project. How many methods call from other modules, how many modules call
other modules and what are all the functions from other module and find how many classes and modules in a given file.

Metrics Validation
 This module is heart of our project. Here we are going to calculate the quality of software based on the
modules, function and size. There are three types of metrics used to calculate the quality of software. Each metric is
given various output/result. Using these outputs we can draw a graph. Finally the graph will denote the quality.

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0309068 8652

Report Generation
 In this module we are going to generate a report for our testing result. Using this report we give some
suggestion to developer. There are two type reports available. One is normal report another one is graph report.

B.ANTICIPATED ADVANTAGES :

 *Proposed system is used for both object and non object oriented software system.
 *Well efficient system.
 *Reorganization is easy.
 *Less time consumption.
 *It test for object oriented and non object oriented software system
 *Three types of metrics is used to identify the project accuracy.

IV. RESULTS

Fig.2 shows the log-in page,upon log-in user is redirected to the registration page where user is requested to register
(Fig.3) the project details of a client for future reference,which includes project code,platform,booking date,delivery
date, in-charge name.

Once the user is registered then they will be redirected to directory path (Fig.4) to analyze the path frequency & path
density.Next step is of code analyzation.Once the code analysis is done,the metric count & metric calculations are
done.After metric calculation,report generation is done as shown in fig.5.

Fig.2. Log-in page

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0309068 8653

Fig.3.Registration Form

Fig.4. Code Selection

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0309068 8654

Fig.5. Report Generation

V. CONCLUSION

 We have enunciated a set of design principles for code modularization and proposed a set of metrics that
characterize software in relation to those principles. Although many of the principles carry intuitive plausibility, several
of them are supported by the research literature published to date. Our proposed metrics seek to characterize a body of
software according to the enunciated principles. The structural metrics are driven by the notion of API—a notion
central to modern software development. Other metrics based on notions such as size-boundedness, size-uniformity,
operational efficiency in layered architectures, and similarity of purpose play important supporting roles. These
supporting metrics are essential since otherwise it would be possible to declare a malformed software system as being
well-modularized. As an extreme case in point, putting all of the code in a single module would yield high values for
some of the API-based metrics, since the modularization achieved would be functionally correct. We reported on two
types of experiments to validate the metrics. In one type, we applied the metrics to two different versions of the same
software system. Our experiments confirmed that our metrics were able to detect the improvement in modularization in
keeping with the opinions expressed in the literature as to which version is considered to be better.

 The other type of experimental validation consisted of randomizing a well-modularized body of software and
seeing how the value of the metrics changed. This randomization very roughly simulated what sometimes can happen
to a large industrial software system as new feature are added to it and as it evolves to meet the changing hardware
requirements. For these experiments, we chose open-source software systems. For these systems, we took for
modularization the directory structures created by the developers of the software. It was interesting to see how the
changes in the values of the metrics confirmed this process of code disorganization. Theoretical validation implies
conformance to a set of agreed-upon principles that are usually stated in the form of a theoretical framework.

REFERENCES

1. J. Whaley, M. C. Martin, and M. S. Lam, “Automati extraction of object-oriented component interfaces,” in ISSTA, 2002.
2. R. Alur, P. Cerny, P. Madhusudan, and W. Nam, “Synthesis ofinterface specifications for Java classes,” in POPL, 2005.
3. M. Gabel and Z. Su, “Symbolic mining of temporal specifications,”in ICSE, 2008, pp. 51–60.
4. D. Lo, L. Mariani, and M. Pezz`e, “Automatic Steering of Behavioral Model Inference,” in FSE. ACM, 2009, pp. 345–354.
5. S. Shoham, E. Yahav, S. Fink, and M. Pistoia, “Static specification mining using automata-based abstractions,” in International Symposium on

Software Testing and Analysis, 2007, pp. 174–184.
6. W. Weimer and G.C. Necula, “Mining Temporal Specifications for Error Detection,” Proc. Int‟l Conf. Tools and Algorithms for the
7. Construction and Analysis of Systems, pp. 461-476, 2005.
National Institute of Standards and Technology, “The economicimpacts of inadequate infrastructure for software testing,” Tech.Rep. 02-3, May 2002.

