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ABSTRACT: In order to reconstruct a class of discrete-time signals with few nonzero coefficients (sparse signals) 
from a small number of observations, finite rate of innovation (FRI) and compressed sensing algorithms has been 
presented. Traditionally, Prony's and orthogonal matching pursuit algorithms are proposed to reconstruct sparse signals 
from the measurement samples when the dictionary is the union of Fourier and identity matrices. However, Prony's 
technique requires computing the polynomial roots of the annihilating filter, and this fact yields an unstable recovery of 
sparse of signal in the high noise environment. In this paper, we propose root-free Prony's method, which avoids 
polynomial root-finding. In the noiseless scenario, the proposed method is able to reconstruct perfectly the original 
sparse signal. Simulation results for the noisy environment demonstrate significant improvement in the performance in 
terms of MSE over the traditional methods, especially in the smaller SNR. 
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I. INTRODUCTION 

 
Consider the issue of determining the signal's sparse representation in union of Fourier and identity bases when additive 
noise is contaminated by observations. Assume that the clean observations are given by 
 

                         𝑓[𝑛] = 1√𝑁 ∑ 𝑐𝑙𝐿𝑝𝑙=1  𝑒𝑗2𝜋𝑁 𝑛𝑘𝑙 + ∑ 𝑑𝑙𝐿𝑞𝑙=1 𝛿[𝑛 − 𝑛𝑙],           0≤n<N-1                                                             (1)   

                    
where 0 ≤ 𝑘1 < ... < 𝑘𝐿𝑝< N-1 and 0 ≤ 𝑛1 < ... < 𝑛𝐿𝑞< N-1 are integers which corresponding to the indices of non-zero 

parameters and 𝑐𝑙 , 𝑑𝑙 ∈ ℂ\{0}  their amplitudes. Due to presence of noise, the observed signal is given by  
 

                         𝑓 [n] = f[n] + γ[n],                                                         0≤n<N-1,                                                          (2) 
 
where γ[n] is i.i.d Gaussian noise. The observed signal is rewritten in matrix notation as follows  
 

                               𝑓= D g+ γ = [F, I] [gp 
T , gq

T ]T + γ                                                                 
(3) 

 where 𝑓, γ ∈ ℂ𝑁  gp, gq∈ ℂ2𝑃and g ∈ ℂ2𝑃. 
 
Various techniques are available in compressed sensing framework to address the noisy sparsity reconstruction issue. 
The two conventional methods for resolving this problem are orthogonal matching pursuit (OMP) algorithm and basis 
pursuit denoising (BPDN) [1,4]. Least absolute shrinkage and selection operator (LASSO) approach [2] was introduced 
to address the sparse reconstruction problem. Recently, a new class of greedy algorithms called subspace pursuit and 
compressive sampling matching pursuit (CoSaMP) [3] have been presented. These algorithms are faster than OMP 
while maintaining similar performance. More recently, Pro-Sparse [5] is based on a variation of Prony's methodology 
that makes full use of the special structure of observed matrix D = [F, I] has been proposed. Prony’s method [6,7] 
involves solving polynomial roots of the annihilating filter which leads to unstable reconstruction when the observed 
signal corrupted with noise. In this work, to avoid solving polynomial roots of the annihilating filter, we proposed a 
root-free Prony’s method (a. k. a finite dimensional FRI) [8] which is based on null space basis of linear system that 
yields better reconstruction performance than traditional Prony’s method. The crucial insight is that, presuming the 
signal gq are also a part of the noise, we may try to reproduce the original Fourier observations of observed signal based 
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on Cadzow's method. Subsequently, we use root-free Prony’s method to recover the signal gq from Fourier 
observations. 
 

II. PROPOSED ALGORITHM 
 

In this section we propose a novel method based on root-free Prony’s approach for sparse signal reconstruction. 
First, we find gq sparse vector by using Cadzow algorithm and then find gp sparse vector by using root-free Prony’s 
method which avoids solving polynomial roots of the annihilating filter. The following steps are involved in the 
proposed method 
1. First, we assume gq as ‘0’ vector of size P X 1 and the corresponding index vector is Ω then we denoise the 

observed signal 𝑓 using Cadzow algorithm which gives denoised signal 𝑓′ 
2. Next, we use for loop to estimating non-zero values in gq. Since the vector gq  having Lq non-zeros, we iterate the 

loop for Lq times. In each iteration we find one non-zero value and removed from the observed signal. In each 
iteration the following steps are involved 

3. Start with computing residual vector r[n] by subtracting denoised vector 𝑓 ′ from original observed vector 𝑓. 
4. Second step involves finding non-zero 𝑛𝑙  location by taking maximum value of |r[n]| 
5. Then store the value of the spike in gq  

6. Next remove spike obtained in previous step from observed signal ‘𝑓’ 
7. This process repeats upto Lq iterations, after completion of Lq iterations all the spikes are removed from observed 

signal 𝑓. 
Once all the non-zero values of gq  are removed then we find gp  sparse vector by using root-free Prony’s approach 
which avoids solving polynomial roots of the annihilating filter. The main idea behind the root-free Prony’s method is 
as follows: 
 
1. Estimate annihilating filter q. 

Consider filter q with Lp+ 1 components {𝑞[𝑛]}𝑛=0 Lp
 whose transfer function has Lp zeros at 𝜂𝑙=𝑒𝑗2𝜋𝑁 𝑘𝑙, that is,         

 𝑄(𝑧) = ∏ (1 − 𝜂𝑙𝑧−1)𝐿𝑝𝑙=1 . It explicitly follows that  

                f [n]*q[n] = ∑ 𝑞[𝑖] 𝑓[𝑛 − 𝑖]𝐿𝑝𝑖=0 = 0                                                                                                                 (4)                         

The filter q[n] is called annihilating filter because it annihilates the sequence f [n].  
The corresponding matrix notation for above equation is given by   

       

[  
   𝑓[𝐿𝑝] 𝑓[𝐿𝑝 − 1]       ⋯ 𝑓[0]𝑓[𝐿𝑝 + 1]    𝑓[𝐿𝑝]           … 𝑓[1] ∶         ∶               … ∶   𝑓[𝑁 − 1]     𝑓[𝑁 − 2]                …      𝑓 [𝑁 − 𝐿𝑝 − 1]]  

   [  
 𝑞[0]𝑞[1]⋮𝑞[𝐿𝑝]]  

 
   = 0 = Fq                                (5) 

 
2.Compute solutions of underdetermined system (3). 
                             gp = FH f  + ∑ αtstTt=1   

                                                                                                                                      (6) 
       where FH is the Hermitian matrix of F, T = P − N is the dimension of null space of F, {𝑠𝑡}𝑡=1𝑇  are null space basis of         
F  and  {𝛼𝑡}𝑡=1𝑇

 are unknown values. 
 
3.Find discrete Fourier transform of gp. 
      Premultiplying (6) by unitary DFT matrix U ∈ ℂP×P, we obtain DFT of gp as 

                             𝑓 = Ugp=U F
H 

f + ∑  𝑇𝑡=1 ∝𝑡Ust..                            

(7)          

         By defining x=U F
H 

f
 and U st=ht , Eq.(7) reduces to  

                             𝑓 = x + ∑  𝑇𝑡=1 ∝𝑡ht                                     

(8)                                                                                    
 
4. Determine unknown values {𝛼𝑡}𝑡=1𝑇  

Let Tr{.} be an operator which maps P × 1 vector  𝑓 into an (P − Lp) × (Lp + 1) 

 Toeplitz matrix  �̂�= Tr{ 𝑓}. Since P elements in vector  𝑓 are of the form f, the 
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 homogeneous system from (5) is also satisfied: 
                           �̂�q =0                        

(9)                                                                                                     
 Substitute (8) in (9) to generate new linear system with T unknowns 

                      [H1q  H2q …. HTq][𝛼1𝛼2⋮𝛼𝑇]   =  -Xq,  

 where X = Tr{x} and Ht = Tr{ht}. This is an overdetermined system, and since 
q is known, which yields a unique solution. 
 
5. Build gp - sparse signal. 
From the estimated values {α𝑡}𝑡=1𝑇  and available observations f , we build gp -sparse vector using Eq.(6). 
 
Algorithm: Reconstructing sparse signal g from observed signal 𝑓 
1: Initialise vector  gq = 0.  
2: Initialise indices  Ω = {0, 1,...,P − 1}.  
3: Denoise 𝑓′ = Cadzow(𝑓, Lp).  
4: for i = 1 to Lq do  

5: Compute residual r = 𝑓 −  𝑓′.  
6: Estimate non-zero location nl = arg maxz∈Ω{| r[n]|}.  
7: Store non-zero value gq[𝑛𝑙] = h[𝑛𝑙].  
8: Remove non-zero location from indices Ω ← Ω \ {𝑛𝑙}.  

9: Remove non-zero value from the observation 𝑓′  =  𝑓 – gq. 

10: Denoise 𝑓′ ← Cadzow(𝑓′ , Lp).  
11: end for  

12: Estimate vector gp = Finite dimensional FRI (𝑓′, Lp). 
 

III. SIMULATION RESULTS 
 

We simulated two experiments and presented results to evaluate the performance of the root-free Prony’s method in the 
presence of noise. Here the mean squared error (MSE) is used to evaluate the reconstruction performance. 
 
EXPERIMENT-1 
First experiment based on varying number of observations. For this we assume the signal with 5 non-zero coefficients 
having length 256 which is shown in fig.2. The signal is contaminated by Gaussian noise with signal to noise ratio 
(SNR) ranging from 5 dB to 50 dB and then measured 130 and 150 observations. 
 

 
 

Fig .2: Original sparse signal 
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Fig. 3: Average MSE of root-free Prony’s method and Prony’s method relative to the number of observations at various 
SNR’s 

 
To reconstruct input sparse signal, we employed Prony’s method and root-free Prony’s method are these observations. 
Fig.3 shows average MSE w.r.t the number of observations at various SNRs. In both methods reconstruction 
performance increases when SNR increases. The plot also shown that when number of observations increases, 
reconstruction performance increases. Moreover, from fig 3, it is cleared that the proposed root-free Prony’s method 
gives better reconstruction performance than Prony’s method.  
 
EXPERIMENT-2 
Second experiment is based on varying signal sparsity. For this we assume two signals with 4 and 6 non-zero 
coefficients having length 256, which are shown in fig.4 and fig.5. The signals are contaminated by Gaussian noise 
with SNR ranging from 5 dB to 50 dB and then measured 130 observations. 

 
 

Fig. 4: Sparse signal with 4 non-zero coefficients 
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Fig. 5: Sparse signal with 6 non-zero coefficients 
 

To reconstruct input signals, we employed Prony’s and root-free Prony’s methods to these observations. 
 

 
Fig. 6: Average MSE of root-free Prony’s method and Prony’s method relative to the signal sparsity at various SNR’s 

 

Fig.6 shows average MSE w.r.t the signal sparsity at various SNRs. In both methods, reconstruction performance 
increases when SNR increases. The plot also shows that when signal sparsity increases, reconstruction performance 
decreases. Moreover from fig.6 it is cleared that the proposed gives better reconstruction performance than Prony’s 
method.  
 

IV. CONCLUSION AND FUTURE WORK 
 

 In this work, using the complete solution of an underdetermined linear system, a novel root-free Prony's method is 
proposed for sparse signal reconstruction. In the noisy case, simulation results show that the proposed root-free Prony's 
method performs better than the traditional Prony's method especially in low signal-to-noise ratios.  
 
Natural images are sparsely represented in the wavelet transform domain, therefore compressive imaging can be 
performed with fewer observations by utilizing root-free Prony's method. In sonar imaging, image transmission over 
underwater acoustic channel challenging because of channel characteristics, such as limited bandwidth. Since sonar 
images sparse in bandelet or wavelet transform domain, root-free Prony's method fair successfully compressing and 
transmitting images. Moreover, in radar imaging, the goal is to identify speed, altitude, and direction of steady and 
moving targets. By solving a reconstruction problem using the root-free Prony's method, received radar signal can be 
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reconstructed from lesser observations. As a result, the price and complexity of receiver’s hardware are drastically 
decreased. 
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