

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 10, October 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0410031 17940

A Survey on Graph-Based Dynamic Approach
to Effectively Rank Documents based Upon

Query Term Constraints

Ammar Poonawala1, Harsh Pereira2, ChetanVatharkar3, Advait Trivedi4, Shraddha Khonde5
Student, Dept. of Computer Engineering, Modern Education Society's College of Engineering, Savitribai Phule Pune

University, Pune, Maharashtra, India1,2,3,4

Assistant Professor, Dept. of Computer Engineering, Modern Education Society's College of Engineering, Savitribai

Phule Pune University, Pune, Maharashtra, India5

ABSTRACT: Document Management System has generated great interest in the business world. A well designed
document management system entails effective and efficient retrieval and processing of stored data. The main factor of
interest in most IR systems is how to effectively rank the retrieved results. In this paper we have proposed a unique
dynamic, graph based approach to effectively score and rank the relevant documents.

KEYWORDS: Ranking algorithm, Jaccard’s similarity, Support count, Dynamic programming.

I. INTRODUCTION

Information Retrieval is the branch of data-mining which focuses on the text-search in a collection of huge set of

document-store. The information retrieval process begins when a user enters a search query. User query is matched in
the database and documents are ranked accordingly.

A document basically contains a rich source of information. As the amount of documents required for large-scale
and small-scale enterprise business is huge, so we need an efficient and accurate Document Management System.

 Document Indexing is a process of tagging information with a file so it can be used for search and retrieval
purposes. The relevant documents returned by the IR System have to be ranked in a efficient and effective way, and in
this paper we propose a method to do so.

We basically store document sets relating to each individual term present in the query, as Intermediate Results, that
can be used by future queries, rather than computing the same every time(Building upon the concept of Dynamic
Programming).

Also we add a support count to each term in the query to help eliminate certain documents not having sufficient
weight age. The support count is calculated based upon the user historical data.

The end result of our algorithm is a weighted graph showing how the query is associated with relevant documents.

II. LITERATUR REVIEW

Presently, information retrieval can be accomplished simply and rapidly with the use of search engines. This allows
users to specify search criteria to obtain the results. A similarity measurement between keywords and index terms is
essentially performed to facilitate users in accessing the required results.[2]. The Jaccard Coefficient is a similarity
measurement used to compare similarity between sets of data.
Earlier research shows Term frequencies and inverse document frequencies have been successfully applied in
determining weighting for document rankings. Rather than using Boolean retrieval where the presence of terms in
documents needs to be recorded in the index, a term can also be assigned a weight that expresses its importance for a
particular document.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 10, October 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0410031 17941

III. PROPOSED ALGORITHM

Fig.1. Basic Flow of Algorithm

The above diagram explains the basic flow of the algorithm. How it works and how we use the intermediate storage for
reducing the time required, and subsequently refining the documents based upon the user query. More in depth
explanation of the algorithm is given later in the paper.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 10, October 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0410031 17942

A. TERM CONSIDERATION:
The considered or in question are extracted from the user query as the input from the Front End or the input
console.[5].

B. SUPPORT COUNT:
The support Count is a percentage degree of normalization on a number in the range [1,0] that is used as a magnitude
that denotes the weight of the term considered in the Query Set & is used by the algorithm for considering or discarding
terms based on their term frequency in the tuples for Document Sets.

C. TERM FREQUENCY:
Suppose we have a term “Cancer” & we wish to determine it's term frequency with respect to a document. We might
count the number of times “Cancer” occurs in the document, this is called the Raw term frequency. For simplicity we
use the Raw frequency for a better understanding and functioning of the Algorithm.

D. CREATING TUPLES AND NODES:
Tuples are the basic structure used in a node in the Graph to Denote a Document Entity.
There are 2 basic nodes i.e. The Query node & the Document node.
The Query & the Documents are denoted as a set with Key:Value pairs.
More accurately, theHashSet Data structure should be used.
Where, Keys are the terms that are considered & the Values are the support count.
For Example,
Query={term1:support,term2:support,...,termN:support}
Document_X={term1:TermFrequency,term2:TermFrequency,...,termN:TermFrequency}

The node contains the above defined tuple as a constituent of itself. The reason of using a node and a Graph
Structure is that we would be able to direct one node to another node and the link weight age to denote weight
properties like The similarity index as described later.

Fig.2. A Basic Structure of Graph (Tuples and Nodes)

The above diagram shows the structure of each node and the link between two nodes. Each node is an inherent
representation of the documents in the form of a set. The links denotes the similarity between two nodes (ideally
the query node and the document node as the weight).

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 10, October 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0410031 17943

E. THE INTERMEDIATE STORAGE:
The Intermediate storage plays an important role for reduction in time Complexity & running time of the Algorithm.
This may or may not be included depending on the need of the algorithm but is highly recommended for high amounts
of data based upon the application.[1].
The Intermediate Storage is basically a table containing indexed documents with respect to previously used frequent
terms in the user queries & User Statistics.
For example,

Fig.3. Intermediate Storage

So as we see above the Intermediate storage stores sets of Document Indexes that can be directly called and used as the
sample space set by the similarity Iterations ,thus reducing the size of the sample set & in true reducing the total
number of iterations that the Algorithm performs to create the Rank Graph. This reduces a humongous amount of
calculation load on the processing side & the total amount of time taken to produce the results.
 The Intermediate Storage can also find the intersections of singular terms thus increasing the reach of the
storage in case the user query extends over the intersection of any 2 given terms. The Storage can again return the
sample space containing more relevant documents thus reducing the total number of calculations and iterations, yet
again

F. QUERY REFINING USING USER STATISTICS:
The User query basically is an unrefined set of terms. Now we need to filter out irrelevant terms from any respective
document that is related to the query and in turn also reduce the similarity of the document with the query.
 The Support count is used in the refining procedure, thus imparting a magnitude to each term. And if the Term
Frequency of the term under consideration in the respective document is under the assigned magnitude then the term is
discarded from the document tuple. Thus making the document less similar to the fed query.
For Example,

Query={Term1,Term2,...,termN} => refining refining function
=>Query_refined={term1:support,term2:support,...,termN:support}
The User statistics is generally a database containing the historic user terms

G. THE JACCAD SIMILARITY BETWEEN DOCUMENTS:
We use the Jaccard Similarity Index to find the similarity between the document and the given query and the document
that is under check.[3],[4].

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 10, October 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0410031 17944

Both the Query and the Document are represented as a hash-set.
The Jaccard's index is calculated as follows,

J(Query_refined,Document_X)= n(Query_refined.intersection(Document_X)) /
 n(Query_refined.union(Document_X))

where, Query={term1:support,term2:support,...,termN:support}
 Document_X={term1:TermFrequency,term2:TermFrequency,...,termN:TermFrequency}

This similarity is then used as the link weight age between the respective document node & the Query node. Later
this index weight is used as a measure for the ranking

Fig.4. Final Graph

The above image shows the output graph, which is the resultant graph of the algorithm. This way the algorithm
displays the end result as a graph with the query node at the centre and each document linked to it with the weights
on the links.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 10, October 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0410031 17945

IV. CONCLUSION
In this paper, we describe a graph-based algorithm for ranking documents based on the user’s query. Jaccard’s
Similarity is used for finding the frequency of terms in a particular document. We are developing a prototype system
based on our method. Further we will try to improve our system by efficient storage for graph approach.

V. FUTURE WORK

To increase the speed of the document retrieval we propose a modification in the Intermediate Stage, Currently
the Intermediate Storage is only being updated when a query is issued to the IR System, But rather we can
periodically update it. We propose to do so in the following way
We consider the various records already present, and create new combinations of these records. We precede so in such
a way till no new unique records can be generated.
Thus the chance that the set of documents we are interested in being present in the Intermediate System greatly
increases, and the document processing is done at a much faster rate.

REFERENCES

1. Sandip R. Pandit, M. A. Potey ‘A Query Specific Graph Based Approach to Multi-document Text Summarization: Simultaneous Cluster and
Sentence Ranking’, IEEE,ICMIRA, Issue no.978-0-7695-5013-8/13, 2013

2. Jingyong Wan, Beizhan Wang, Wei Guo, Kang Chen, Jiajun Wang ‘A Distributed Search Engine Based on a Re-ranking Algorithm Model‘,
IEEE, Issue no. 978-1-4799-6600-4/15, 2015

3. SuphakitNiwattanakul, JatsadaSingthongchai, EkkachaiNaenudorn and SupachanunWanapu ‘Using of Jaccard Coefficient for Keywords
Similarity’ , Proceedings of the International MultiConference of Engineers and Computer Scientists 2013,Vol I, IMECS 2013, March 13 - 15,
2013, Hong Kong

4. VikasThada, DrVivekJaglan ‘Comparison of Jaccard, Dice, Cosine Similarity Coefficient To Find Best Fitness Value for Web Retrieved
Documents Using Genetic Algorithm’ , International Journal of Innovations in Engineering and Technology (IJIET) ,Vol. 2, Year 2013

5. S. Florence Vijila and Dr. K. Nirmala‘Quantification of Portrayal Concepts using tf-idfWeighting’, International Journal of Information
Sciences and Techniques (IJIST) , Vol.3, No.5, September 2013

6. Yadong Zhu, YanyanLan, JiafengGuo, Pan Du, Xueqi Cheng, 'A Novel Relational Learning-to-Rank Approach for Topic-Focused Multi-
DocumentSummarization', IEEE 13th International Conference on Data Mining,No.1550-4786, 2013

7. Sengolmary J, Usha S, 'Web Based Document Management System in Life Science Organization',Online International Conference on Green
Engineering and Technologies (IC-GET 2015), No. 978-1-4673-9781-0/15, 2015

8. RajniJindal,ShwetaTaneja, 'Ranking in Multi Label Classification of Text Documents Using Quantifiers', IEEE International Conference on
Control System, Computing and Engineering, No.162-166, 2015

9. AzamFeyznia, Mohsen Kahani, Reza Ramezani, 'A Link Analysis Based Ranking Algorithm for Semantic Web Documents', 6th Conference on
Information and Knowledge Technology (lKT 2014),Pg. no. 123-127, 2014

10. Liana Ermakova, JosianeMothe, 'Document Re-ranking Based on Topic-Comment Structure',IEEE,ICMIRA,No. 978-1-4799-8710-8/16, 2016
11. HediyehBaban,SalimahMokhtar, 'Online Document Management System for Academic Institutes', 3rd International Conference on Information

Management, Innovation Management and Industrial Engineering, No. 315-319, 2010
12. ShyamaleshKhan,B V N Prasad,SSelvi,Usha Rani, 'Document Management System: An Explicit Knowledge Management System',2nd

International Conference on Computing for Sustainable Global Development, No.402, 2015

