

# INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH 

IN COMPUTER \& COMMUNICATION ENGINEERING

Volume 9, Issue 8, August 2021

|SN

INTERNATIONAL STANDARD
SERLAL NUMBER INDIA

Impact Factor: $\mathbf{7 . 5 4 2}$

# A (15, 5, 7) BCH Encoder AND Decoder for Data Transmission 

Rakesh B Shettar, Ravi Hosamani , Praveen Kumar Y G<br>Asst. Professor, Dept. of Electronics \& Communication Engineering, KLE Institute of Technology, Hubballi, Karnataka, India<br>Asst. Professor, Dept. of Electronics \& Communication Engineering, KLE Institute of Technology, Hubballi, Karnataka, India<br>Asst. Professor Dept. of ECE, Sri Siddhartha Institute of Technology, SSAHE, Tumkuru, India


#### Abstract

This paper describes the design of $(15,5,7) \mathrm{BCH}$ encoder and decoder using mathematical derivation BCH code is one of the most important cyclic block codes. where 15,5 and 7 represents the block length(n), data length $(\mathrm{k})$ and maximum number of correctable errors $(\mathrm{t})$ respectively. A brief introduction to the BCH code is given. The objectives fulfilled are written. Reference papers and texts are mentioned. The procedure to obtain minimal polynomials for a given code specification of n and d (or t ), is explained for $(15,5)$ code with $\mathrm{d}=7$. The generator polynomial is then obtained with LCM of M1(x)M3(x )M3 (x ). Decoding method is explained with the help of an example for one combination of received words. BCH decoding procedure using PGZ (Peterson Gorenstein Zierler) is explained. Syndrome calculation is presented and decoding steps are discussed. Results of BCH encoding and decoding are tested using built-in functions in Matlab for $\mathrm{n}=15, \mathrm{k}=7$, 2-bit error-correcting code.


KEYWORDS: Bose Chaudhuri Hocquenghem (BCH), BCH Encoder, BCH Decoder .

## I. Introduction

A cyclic code is a block code, where the circular shifts of each codeword give another word that belongs to the code. They are error-correcting codes that have algebraic properties that are convenient for efficient error detection and correction.

In coding theory, the BCH codes or Bose-Chaudhuri-Hocquenghem codes form a class of cyclic error-correcting codes that are constructed using polynomials over a finite field(also called Galois field). BCH codes were invented in 1959 by French mathematician Alexis Hocquenghem, and independently in 1960 by Raj Bose and D. K. RayChaudhuri. The name Bose-Chaudhuri-Hocquenghem (and the acronym BCH) arises from the initials of the inventors' surnames (mistakenly, in the case of Ray-Chaudhuri[1][2]).

One of the key features of BCH codes is that during code design, there is precise control over the number of symbol errors correctable by the code. In particular, it is possible to design binary BCH codes that can correct multiple bit errors. Another advantage of BCH codes is the ease with which they can be decoded, namely, via an algebraic method known as syndrome decoding. This simplifies the design of the decoder for these codes, using small low-power electronic hardware [1].

Given a prime number $q$ and prime power $q^{m}$ with positive integers $m$ and $d$ such that $d \leq q^{m}-1$, a primitive narrowsense BCH code over the finite field (or Galois field) $\mathrm{GF}\left(\mathrm{q}\right.$ ) with code length $\mathrm{n}=\mathrm{q}^{\mathrm{m}}-1$ and distance at least d , is constructed by the method mentioned in the next paragraph-

Let $\alpha$ be a primitive element of $\mathrm{GF}\left(\mathrm{q}^{\mathrm{m}}\right)$. For any positive integer i , let $\mathrm{m}_{\mathrm{i}}(\mathrm{x})$ be the minimal polynomial with coefficients in $\operatorname{GF}(\mathrm{q})$ of $\alpha^{i}$. The generator polynomial of the BCH code is defined as the least common multiple $\mathrm{g}(\mathrm{x})=$ $\operatorname{lcm}\left(m_{1}(x), \ldots, m_{d-1}(x)\right)$. It can be seen that $g(x)$ is a polynomial with coefficients in $G F(q)$ and divides $x^{n}-1$. Therefore, the polynomial code defined by $\mathrm{g}(\mathrm{x})$ is cyclic [2].

## II. Related work

In [1] K. Rajani C. Raju, in "Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL", BCH codes are excellent error-correcting codes among codes of short lengths. They are simple to encode and relatively simple to decode. Due to these qualities, there is much interest in the exact capabilities of these codes. The speed and device utilization can be improved by adopting parallel approach methods. Samir Jasim Mohammed in

# International Journal of Innovative Research in Computer and Communication Engineering 

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 7.542
|| Volume 9, Issue 8, August 2021 ||
| DOI: 10.15680/IJIRCCE.2021.0908033 |
"Implementation of Encoder for (31, k) Binary BCH Code based on FPGA for Multiple Error Correction Control", explains the design and implementation of BCH encoders using a Field Programmable Gate Array (FPGA). The proposed BCH encoders have been designed and simulated using Xilinx-ISE 10.1 Web PACK and implemented in a xc3s700a-4fg484 FPGA and the results show that the system works quite well. Amit Kumar Panda, Nalini Tiwari, in "Design and Implementation of $(63,45)$ Binary BCH code Encoder on Spartan 3 FPGA for Noisy Communication Channel", have designed and shown excellent error-correcting codes among codes of short lengths. FPGA implementation of $(63,45) \mathrm{BCH}$ encoder has simplified the design for error correction in various wireless communication networks like Wimax, Wifi, Bluetooth, etc and the results show that it can operate at a maximum frequency of 217.533 MHz by consuming less power and negligible resources of the target device. In the text 'The Art of Error Correcting Coding' by Robert H. and Morelos Zaragoza [4], BCH decoding schemes are explained with examples. From the literature survey, it is observed that BCH codes are used in applications such as compact disc players, DVDs, disk drives, solid-state drives, two-dimensional bar codes, and satellite communications [1].

The knowledge of an error-correcting code by classical means is to be known to explore the decoding schemes using deep learning methods in the future scope of the study. This is because, it is expected that there will be a paradigm shift in decoding schemes in the present and future era of exploitation of artificial intelligence, neural networks, and deep learning. Thus, knowing that it will give a future scope of research, the work is carried out with following approach on the design of the BCH error correction code[5]

- Design of $(15,5,7) \mathrm{BCH}$ code in Matlab is accomplished.
- Encoder, as well as decoder, are verified to work satisfactorily.
- Performance in AWGN channel is checked and Pe vs. SNR plots are obtained.

Error-correcting capacity is decided by the specification of the code. If errors are more than the designed value, error correction is not guaranteed.

In Section, I of the paper brief introduction to the BCH code is discussed.In Section II, a brief of the procedure to obtain minimal polynomials for a given code specification of $n$ and $d$ (or $t$ ), is explained for $(15,5)$ code with $d=7$. The generator polynomial is then obtained with LCM of $\left(\mathrm{m}_{1}(\mathrm{x}), \ldots, \mathrm{m}_{\mathrm{d}-1}(\mathrm{x})\right)$ and the decoding method is explained with the help of an example for one combination of received words. In Section III, results of encoding and decoding are shown. Pe (Probability of bit error) vs. SNR (Signal to Noise Ratio) in AWGN channel, with different data sizes, are presented. The report ends with conclusions in Section IV. Bibliography is given for the reader's reference.

## III.METHODOLOGY

BCH Encoding- Any polynomial that is a multiple of the generator polynomial is a valid BCH codeword, BCH encoding is merely the process of finding some polynomial that has the generator as a factor. The BCH code may be implemented either as a systematic code or not, depending on how the implementer chooses to embed the message in the encoded polynomial [2]. Binary BCH codes are defined in the following manner [5].
binary BCH code with the following parameters-
For any integer $\mathrm{m} \geq 3$ and $\mathrm{t}<2^{\mathrm{m}-1}$, there exists a binary BCH code with the following parameters-

- Block Length or code Length $\mathrm{n}<2 \mathrm{~m}-1$
- Number of parity digits $\mathrm{n}-\mathrm{k}<\mathrm{mt} \quad n-k \leq m t$
- Minimum distance dmin>2t+1
- Where $t$ is the error-correcting capability of the code

This code is capable of correcting any combination of $t$ or fewer errors in a block of length $n<2^{m}-1$.Hence, we call it error-correcting BCH code.

Let us consider the binary word 10001 which represents D and is placed in 7-bit of information which is then appended with a 3-bit sequence. Thus, the 15-bit sequence is divided with generator polynomial to obtain a remainder. By combining the message sequence with the remainder sequence, the codeword is obtained $\left.c(x)=x^{n-k} m(x)+r(x) 100011110101100\right)$
BCH Decoding- Decoding is considerably more complicated and requires three steps after a data vector is received.
Given a BCH code that can correct t errors, the steps are[5, 6]-During some of these steps, the decoding algorithm may determine that the received vector has too many errors and cannot be corrected. For example, if an appropriate value
| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com ||Impact Factor: 7.542
|| Volume 9, Issue 8, August 2021 ||
| DOI: 10.15680/IJIRCCE.2021.0908033 |
of $t$ is not found, then the correction would fail. In a truncated (not primitive) code, an error location may be out of range. If the received vector has more errors than the code can correct the decoder may unknowingly produce a valid message that is not one way we sent[2].

- Example : $\mathrm{BCH}(15,5,7)$ code has primitive polynomial $p(x)=\mathrm{x}^{4}+\mathrm{x}+1$. The received $\mathrm{r}(\mathrm{x})=\mathrm{x}^{7}+\mathrm{x}$. Compute the syndrome and estimate the received codeword $\mathrm{d}=2 \mathrm{t}+1,7=2 \mathrm{t}+1, \mathrm{t}=3$, three error-correcting code. $2 \mathrm{t}=6$. The test results in the design of BCH decoding are presented in this section.


## Testing the error correction of message $=00010$

Error correction is verified by making received bits as wrong shown with red color (or bold font) in 'rec'

$$
\begin{aligned}
& \text { i. } \quad \operatorname{Rec}=\left[\begin{array}{llllllllllll}
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1
\end{array} 1110\right] ; \\
& \text { no errors occurred } \\
& \mathrm{d}=0 \begin{array}{lllll}
0 & 0 & 0 & 1 & 0
\end{array} \\
& \text { ii. } \quad \operatorname{Rec}=\left[\begin{array}{llllll}
0 & 0 & 1011 & 0 & 01101111
\end{array}\right] \text {; } \\
& \mathrm{d}=0 \begin{array}{llll}
0 & 0 & 1 & 0
\end{array} \\
& \text { iii. } \quad \text { rec }=\left[\begin{array}{lllllllllll}
0 & 0 & 0 & 1 & 010 & 0 & 1101101
\end{array}\right] \text {; } \\
& \mathrm{d}=0 \begin{array}{lllll}
0 & 0 & 0 & 1 & 0
\end{array} \\
& \text { iv. } \quad \text { rec }=[1001010011101101] \text {; } \\
& \mathrm{d}=0 \begin{array}{llll}
0 & 0 & 1 & 0
\end{array} \\
& \text { v. } \quad \text { rec }=[1001010011001101] ; \\
& \mathrm{d}=\mathbf{1} \quad 0 \quad 0 \quad 1 \quad 0
\end{aligned}
$$

following Observations made from the solution of previous example; (i), no error occurred gives the correct encoded bits. In (ii) (iv), errors are introduced in bit positions and marked with red color ( or bold font) with reference to (i).In (ii) to (iv), three errors are corrected to make decoded same as message.In (v), errors are in more than 3 positions, therefore, output is different. Testing the error correction of message $=10001$

```
    i. rec=[100011111101011100];
    1. no errors occured
    2. d=100 0 1
    ii. rec=[llOOOL1111101011101]
        1. d=100 0 1
iii. rec=[1000111110101111];
    1. d=100 0 1
iv. rec=[10000011111014011111];
    1. d=100 0 1
    v. rec=[10000001110101 1 1 111];
    1. d=100 00
```

following Observations made from the solution of previous example; (i), no error occurred gives the correct encoded bits. In (ii) to (iv), errors are introduced in bit positions and marked with red color about (i).In (ii) to (iv), three errors are corrected to make decoded the same as a message. In (v), errors are in more than 3 positions, therefore, the output is different

## IV. RESULTS AND DISCUSSION

In this chapter, results obtained by simulating programs for $(15,5) \mathrm{BCH}$ encoding, decoding, Pevs SNR plots with AWGN channel and with fading channel are presented. Following is the table for different message bits to encoded outputs

Table 1 Message input and Encoded output of $(15,5)$ BCH code

| Sr. No. | Message input | Encoded output |
| :--- | :--- | :--- |
| 1 | 00000 | 000000000000000 |
| 2 | 00001 | 000010100110111 |
| 3 | 00010 | 000101001101110 |

| DOI: 10.15680/IJIRCCE.2021.0908033 |

| 4 | 00011 | 000111101011001 |
| :---: | :---: | :---: |
| 5 | 00100 | 001000111101011 |
| 6 | 00101 | 001010011011100 |
| 7 | 00110 | 001101110000101 |
| 8 | 00111 | 001111010110010 |
| 9 | 01000 | 010001111010110 |
| 10 | 01001 | 010011011100001 |
| 11 | 01010 | 010100110111000 |
| 12 | 01011 | 010110010001111 |
| 13 | 01100 | 011001000111101 |
| 14 | 01101 | 011011100001010 |
| 15 | 01110 | 011100001010011 |
| 16 | 01111 | 011110101100100 |
| 17 | 10000 | 100001010011011 |
| 18 | 10001 | 100011110101100 |
| 19 | 10010 | 100100011110101 |
| 20 | 10011 | 100110111000010 |
| 21 | 10100 | 101001101110000 |
| 22 | 10101 | 101011001000111 |
| 23 | 10110 | 101100100011110 |
| 24 | 10111 | 101110000101001 |
| 25 | 11000 | 110000101001101 |
| 26 | 11001 | 110010001111010 |
| 27 | 11010 | 110101100100011 |
| 28 | 11011 | 110111000010100 |
| 29 | 11100 | 111000010100110 |
| 30 | 11101 | 111010110010001 |
| 31 | 11110 | 111101011001000 |
| 32 | 11111 | 111111111111111 |

## A. Decoding of $(\mathbf{1 5 , 5}) \mathbf{B C H}$ code

- The decoding is explained in section II using an example. $(15,5) \mathrm{BCH}$ code with AWGN channel for data size1000


Fig. 1 BER vs SNR plot for message bits of 1000
Table 2. SNR , Error bits for encoded bits 1000

| SNR | 23 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Error | 174 | 0 | 0 | 0 | 0 | 0 |
| Encoded | $1000 / 5=200$ sets of 5 bits $x$ |  |  |  |  |  |
| Bits |  |  |  |  |  |  | | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 7.542

|| Volume 9, Issue 8, August 2021 ||
| DOI: 10.15680/IJIRCCE.2021.0908033 |

- $(15,5) \mathrm{BCH}$ code with awgn channel for data size- 10000


Fig. 2 BER vs SNR plot for message bits of 10000

Table 3. SNR , Error bits for encoded bits 10000

| SNR | 23 | 4 | 5 | 6 | 7 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Error | 20249 | 4 | 0 | 0 | 0 | 000000 |
| Ratio <br> 0.0202 | 0.0202 | 0.0049 | 0.00040 | 0 | 0 | 0.0049 |
| Encoded <br> Bits | $100005=2000$ sets of 5 bits $\times 15=30000$ bits |  |  |  |  |  |

- $(15,5)$ BCH code with AWGN channel for data size- 100000


Fig. 3 BER vs SNR plot for message bits of 50000

Table 4. SNR , Error bits for encoded bits 50000

| SNR | 23 | 4 | 56 | 789 | 10111213 |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Error | 1068 | 260 | 68 | 00 | 0 | 0 |
| Pe0.021360.00520.0013600 | 00000 |  |  |  | 00 |  |

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 7.542
|| Volume 9, Issue 8, August 2021 ||
| DOI: 10.15680/IJIRCCE.2021.0908033 |


Fig. 4 BER vs SNR plot for message bits of100000(1 lakh)
Table 5. SNR , Error bits for encoded bits 100000

| SNR | 23 | 4 | 56 | 789 | 10111213 |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Error | 2109 | 568 | 85 | 50 | 00000 | 00 |
| Pe2.109 e-025.68 e-03 | 8.5 | e-045.0e-0500000000 |  |  |  |  |

Execution time in matlab Start time 14.16 pm ; End time 14.56 pm Total 40 minutes execution time for 1lakh message bits.

## IV. CONCLUSIONS

Encoder and decoder using mathematical derivation BCH code is one of the most important cyclic block codes as seen in communication system . Results of BCH encoding and decoding are tested using built-in functions in Matlab for $\mathrm{n}=15, \mathrm{k}=7$, 2-bit error-correcting codes, also results are verified with working for $\mathrm{n}=15, \mathrm{k}=5, \mathrm{t}=3 \mathrm{BCH}$ code is given. results also verified for the same. The correct design of minimal polynomials $\mathrm{M}(\mathrm{x})$ and generator polynomial $\mathrm{g}(\mathrm{x})$, essential for decoding are verified with the reference[5]. Encoding and decoding without adding noise are tested and verified. The codes are verified to successfully correct the error in three-bit positions as verified.A performance of $\mathrm{Pe}=10^{-5}$ is obtained for SNR of 5 dBs , in awgn channel using Matlab for different data sizes of message bits from 1000 bits to 1 lakh bits are presented.

## REFERENCES

1. K. Rajani, C. Raju, Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL, International Journal of Engineering Research \& Technology (IJERT), Vol. 2, Issue 9, September 2013.
2. BCHcodes. https://en.wikipedia.org/wiki/BCH_code\#cite_note
3. GaloisField(Finitefield).http://www2.siit.tu.ac.th/prapun/tcs455/ece561\ 05\ 01\ Polynomials\ over\%2 0Galois\%20Field.pdfPrimitivePolynomials.http://www.uobabylon.edu.iq/eprints/paper_1_17490_649.pdf
4. Shu Lin and D. J. Costelo, Error Control Coding, Second Edition, Pearson-Prentice Hall.
5. Robert H. and Morelos Zaragoza, The Art of Error Correcting Coding,Second Edition, Wiley India Edition, 2013.
6. Simon Haykin, "Communication Systems", 4th Edition, John Wiley \& Sons, Inc.
7. W.W.Peterson, "Encoding and Error-Correction procedures for the Bose-Chaudhuri Codes", IRE Trans. Inf. Theory, IT6, p. 459-470, Sep. 1960.
8. Yunghsiang S. Han, "BCH Codes", Graduate Institute of Communication Engineering, National Taipei University Taiwan.
9. W.W.Peterson, "Encoding and Error-Correction procedures for the Bose-Chaudhuri Codes", IRE Trans. Inf. Theory, IT6, p. 459-470, Sep. 1960.
10. Yunghsiang S. Han, "BCH Codes", Graduate Institute of Communication Engineering, National Taipei University Taiwan.
11. Shu Lin and Daniel J. Costello, Jr., -Error Control Coding, Englewood Cliffs, New Jersy: Prentice Hall, Chapter 1, 1983.

# International Journal of Innovative Research in Computer and Communication Engineering 

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 7.542
|| Volume 9, Issue 8, August 2021 ||
| DOI: 10.15680/IJIRCCE.2021.0908033 |

## BIOGRAPHY

Rakesh B Shettar obtained his BE degree in Electronics \& Communication Engineering in 2008 and Master of Technology from VTU Belgavi, Karnataka ,India 2010. He is currently working as assistant professor in the department of Electronics \& Communication Engineering, K.L.E Institute of Technology, Hubballi, Karnataka, India. With over 11 year of teaching experience. He is a member of International Association of Engineering (IAENG). His research interest are Signal Processing, Image Processing.

Ravi Hosamani obtained his B.E. degree in Electronics and Communication Engineering In 2006 and Master of Technology from VTU, Belagavi, Karnataka, India, in 2010. He currently working as Assistant Professor in the Department of Electronic and Communication Engineering, K.L.E. Institute of Technology, Hubballi, Karnataka, India. With over 11 years of teaching experience. He is a member of IEEE,ISTE, IEI and IAENG .He has authored/coauthored articles in referred international and national journal and conference. His research interests are VLSI, Signal processing.
Y.G.PraveenKumar obtained his B.E. degree in Electronics and Communication Engineering from VTU, Belagavi, Karnataka, India in 2008 and Master of Technology in VLSI Design and Embedded Systems from the same university in 2010. He has been working as Asst. professor in the Department of Electronics and Communication Engineering, Sri Siddhartha Institute of Technol-ogy, Tumakuru, Karnataka, India for 9years. He is a life member in Indian Society for Technical Education (ISTE). He has authored Jco-authored more than 25 articles in refereed international journals and conferences. His research interests are in the areas of VLSI System Design, Low power applications, Digital Design.


SJIF Scientific Journal Impact Factor

# INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH 

IN COMPUTER \& COMMUNICATION ENGINEERING
[ 9940572462 @ 6381907438 ⓘjircce@ymail.com

