Integral solutions of Ternary Cubic Diophantine equation

\[8\alpha^2 - 5\beta^2 = 3\gamma^3\]

R. Anbuselvi, S. Jamuna Rani

Associate Professor, Department of Mathematics, ADM College for Women, Nagapattinam, Tamilnadu, India

Asst. Professor, Department of Computer Applications, Bharathiyar College of Engineering and Technology, Karaikal, Puducherry, India

ABSTRACT: The ternary cubic Diophantine equation given by \[8\alpha^2 - 5\beta^2 = 3\gamma^3\] is analyzed for its patterns of non-zero distinct integral solutions. A few interesting relations between the solutions and special polygonal numbers are exhibited.

KEYWORDS: Ternary cubic, integral solutions, polygonal numbers.

I. INTRODUCTION

Ternary quadratic equations are rich in variety [1-3]. For an extensive review of sizable literature and various problems, one may refer [4-18]. In this communication, we consider yet another interesting ternary cubic equation \[8\alpha^2 - 5\beta^2 = 3\gamma^2\] and obtain infinitely many non-trivial integral solutions. A few interesting relations between the solutions and special polygonal numbers are presented.

II. NOTATIONS USED

- \(t_{m,n}\) - Polygonal number of rank ‘n’ with size ‘m’
- \(CP_{m,n}\) - Centered Pyramidal number of rank ‘n’ with size ‘m’
- \(Pr_n\) - Pronic number of rank ‘n’
- \(P_{n,m}\) - Pyramidal number of rank ‘n’ with size ‘m’
- \(F_{m,n}\) - Figurative number of rank ‘n’ with size ‘m’
- \(Gn_{n,m}\) - Gnomic number of rank ‘n’

III. METHOD OF ANALYSIS

The Cubic Diophantine equation with three unknowns to be solved for its non zero distinct integral solutions is

\[8\alpha^2 - 5\beta^2 = 3\gamma^3\] (1)

We illustrate methods of obtaining non Zero distinct integer solutions to (1)

On substituting the linear transformations

\[
\alpha = X_1 + 5T_1; \quad \beta = X_1 + 8T_1
\]

in (1), leads to

\[
X_1^2 - 40T_1^2 = \gamma^3
\]

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016.0412048 21612
Assume
\[y_1 = y_1(a, b) = X^2 - 40Y^2; \quad a, b > 0 \] (4)

(3) is solved through different approaches and different patterns of solutions thus obtained for (1) are illustrated below:

Pattern I

Equation (3) can be written as
\[X_1 + \sqrt{40} T_1 = \left(X + \sqrt{40} Y \right) \left(X - \sqrt{40} Y \right) \] (5)

Which is equivalent to the system of equations
\[
\begin{align*}
X_1 + \sqrt{40} T_1 &= (X_1 + \sqrt{40} Y)^3 \\
X_1 - \sqrt{40} T_1 &= (X_1 - \sqrt{40} Y)^3
\end{align*}
\] (6)

Equating rational and irrational parts in (6) we get
\[
\begin{align*}
\alpha &= \alpha(X,Y) = X^3 + 200Y^3 + 15X^2Y + 120XY^2 \\
\beta &= \beta(X,Y) = X^3 + 320Y^3 + 24X^2Y + 120XY^2 \\
\gamma &= \gamma(X,Y) = X^2 - 40Y^2
\end{align*}
\]

Properties

1. \(\beta(1,Y) - \alpha(1,Y) - 60 S O_y \equiv 0 (mod\ 23) \)
2. \(\beta(X,1) - \alpha(X,1) - t_{4, x} - 120 \equiv 0 \)
3. \(\alpha(X,1) + \beta(X,1) - SO_x - 39 Pr_x \equiv 520 (mod\ 101) \)
4. \(\alpha(X,1) - CP_x^6 - 15 Pr_x \equiv 200 (mod\ 21) \)
5. \(\gamma(X,Y) - t_{4, x} - 40 \equiv 0 \)
6. Each of the following expression represents a nasty number
 a. \(\beta(0,1) - \alpha(0,1) \)
 b. \(\gamma(1,2) + \gamma(1,1) \)
7. \(\frac{1}{12} \alpha(1,1) \) represents a perfect number.
8. Each of the following expression can be expressed as a difference of two square numbers
 a. \(\alpha(1,1) \)
 b. \(\beta(2,2) \)
 c. \(\gamma(2,2) \)
9. Each of the following expression represents a perfect square
 a. \(\alpha(2,2) + \alpha(1,1) + \alpha(1,0) \)
 b. \(\beta(2,2) + \beta(1,0) \)
 c. \(\beta(0,1) + \beta(1,1) - \beta(1,0) \)
 d. \(\gamma(2,2) - \gamma(0,1) \)
10. Each of the following expression represents a cubical integer
 a. \(\alpha(0,2) - 3\alpha(0,1) \)
 b. \(\alpha(1,2) - \alpha(0,2) + \alpha(1,0) \)
 c. \(\alpha(2,0) + \alpha(1,0) \)
Pattern II

One may write (3) as

\[X_1^2 - 40 T_1^2 = \gamma^3 \cdot 1 \] \hspace{1cm} (7)

Write 1 as

\[1 = \frac{(\gamma + \sqrt{7}) (\gamma - \sqrt{7})}{9} \] \hspace{1cm} (8)

Using (4), (5) and (8) in (7) and applying the method of factorization and equating positive factors, we get

\[X_1 + \sqrt{40} T_1 = \frac{1}{3} \left(7 + \sqrt{40} \right) (X + \sqrt{40} Y)^3 \] \hspace{1cm} (9)

Equating rational and irrational parts of (9), we have

\[X_1 = \frac{1}{3} (7X^3 + 1600 Y^3 + 120 X^2 Y + 840 XY^2) \]

\[T_1 = \frac{1}{3} (X^3 + 280 Y^3 + 21 X^2 Y + 120 XY^2) \]

Employing (2), the values of X and Y satisfying (1) are given by

\[
\begin{aligned}
\alpha &= \alpha(X,Y) = 4X^3 + 1000Y^3 + 75X^2Y + 480XY^2 \\
\beta &= \beta(X,Y) = 5X^3 + 1280Y^3 + 96X^2Y + 600XY^2 \\
\gamma &= \gamma(X,Y) = X^2 - 40Y^2
\end{aligned}
\]

Properties

1. \(4\beta(X,1) - 5\alpha(X,1) - t_{4,3X} - 120 \equiv 0 \)
2. \(\alpha(X,1) + \beta(X,1) - 18 P_5^x - 162 P_5^x \equiv 2280 \ (\text{mod } 918) \)
3. \(4\beta(1,y) - 5\alpha(1,y) - 120CP_5^y \equiv 0 \ (\text{mod } 9) \)
4. \(\beta(x,1) - \alpha(x,1) - 2P_5^x + 20P_5^x \equiv 280 \ (\text{mod } 100) \)
5. \(4\beta(1,y) - 5\alpha(1,y) - 605O_5^y \equiv 0 \ (\text{mod } 23) \)
6. Each of the following expression represents a cubical integer
 a. \(\gamma(2,2) - \alpha(2,0) + \gamma(1,0) \)
 b. \(\alpha(3,0) - \alpha(1,0) - \beta(1,0) - \gamma(1,0) \)
 c. \(\gamma(3,3) - \gamma(1,3) \)
7. Each of the following expression represents a perfect number
 a. \(\beta(3,0) - \alpha(3,0) + \gamma(1,0) \)
 b. \(\beta(1,0) + \gamma(1,0) \)
8. Each of the following expression represents a Nasty number
 a. \(\frac{1}{2} \alpha(3,0) \)
 b. \(\gamma(1,1) - \gamma(1,2) \)
 c. \(\alpha(3,0) - 3\alpha(1,0) \)
 d. \(\frac{1}{2} \gamma(0,3) \)
 e. \(\alpha(3,0) + 3\alpha(1,0) \)
 f. \(\beta(3,0) - 3\beta(1,0) \)
9. \(\gamma(3,3) \) can be expressed as a sum of cube numbers.
10. Each of the following can be expressed as a perfect squares
 a. \(\alpha(1.0) + \beta(1.0) - \gamma(0.2) \)
 b. \(\beta(1.1) + \gamma(0.1) - \beta(1.0) \)
 c. \(\beta(1.1) - \beta(0.2) - \beta(1.0) \)
 d. \(\alpha(1.1) + \beta(0.2) + \gamma(1.0) \)
 e. \(\alpha(1.1) - \gamma(0.1) + \gamma(1.0) \)

Pattern III
One may write (3) as
\[
X_1^2 - 40T_1^2 = \gamma^3 \cdot 1
\] (10)

Write 1 as
\[
1 = \frac{(11+\sqrt{40})(11-\sqrt{40})}{\sqrt{40}}
\] (11)

Using (4), (5) and (11) in (10) and applying the method of factorization and equating positive factors, we get
\[
X_1 + \sqrt{40}T_1 = \frac{1}{9} (11 + \sqrt{40})(X + \sqrt{40})Y^3
\] (12)

Equating rational and irrational parts of (12), we have
\[
X_1 = \frac{1}{9}(11X^3 + 1600Y^3 + 120X^2Y + 1320XY^2)
\]
\[
T_1 = \frac{1}{9}(X^3 + 440Y^3 + 33X^2Y + 120XY^2)
\]

As our aim is to find integer solutions choosing \(X=3x \), \(Y=3y \), we obtain as follows
\[
\begin{align*}
\alpha &= \alpha(X,Y) = \frac{1}{9}(16X^3 + 3800Y^3 + 385X^2Y + 1920XY^2) \\
\beta &= \beta(X,Y) = \frac{1}{9}(19X^3 + 5120Y^3 + 384X^2Y + 2280XY^2) \\
\gamma &= \gamma(X,Y) = X^2 - 40Y^2
\end{align*}
\]

employing (2), the values of \(X \) and \(Y \) satisfying (1) are given by
\[
\begin{align*}
\alpha &= \alpha(x,y) = 48x^3 + 11400x^3 + 855x^2y + 5760xy^2 \\
\beta &= \beta(x,y) = 57x^3 + 15360y^3 + 1152x^2y + 68440xy^2 \\
\gamma &= \gamma(x,y) = 9x^2 - 360y^2
\end{align*}
\]

Properties
1. \(\beta(x,1) - \alpha(x,1) - 9CP_x^6 - 297Pr_x - Gx_0 \equiv 3960 \mod 11 \)
2. \(\beta(1,y) - \alpha(1,y) - 3960CP_x^6 - 297Pr_x - 783t_4y - 9 \equiv 0 \)
3. \(\beta(x,1) - \alpha(x,1) - 18P_x^6 - 288Pr_x \equiv 3960 \mod 792 \)
4. \(\beta(x,1) - 114 P_x^6 - 1095Pr_x \equiv 15360 \mod 5745 \)
5. \(\alpha(2,y) - 22800 P_x^6 - 120Pr_x \equiv 384 \mod 3300 \)
6. Each of the following expression represents a perfect square
Observation on the Ternary Cubic Equation

\[\alpha(1.1) + y(1.2) + y(1.0) \]

7. \(\beta(2.2) - y(3.3) \) represents a cubic number
8. \(y(3.3) \) can be expressed as a difference of two square numbers.

IV. CONCLUSION

In this paper, we have presented three different patterns of non-zero distinct integer solutions of ternary cubic Diophantine equation \(8\alpha^2 = 5\beta^2 = 3y^3 \) and relations between solutions and special numbers are also obtained. To conclude, one may search for other patterns of solutions and their corresponding properties.

REFERENCES

Journal Articles

Reference Books
1. Dickson IE, Theory of Numbers, vol 2. Diophantine analysis, New York, Dover, 2005