

 Volume 12, Issue 5, May 2024

Impact Factor: 8.379

 | DOI: 10.15680/IJIRCCE.2024.1205249 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 6644

Decentralized File Backup and Restore System

Uma K M
1
, Sneha Priyanshu

2
, Rezin Ahammed M

3
, Stuti Karki

4
, Sidhant Sharma

5

Assistant Professor, Department of Computer Science and Engineering, Dr. Ambedkar Institute of Technology,

Bangalore, Karnataka, India1

Students, Department of Computer Science and Engineering, Dr. Ambedkar Institute of Technology, Bangalore,

Karnataka, India 2,3,4,5

ABSTRACT: The Decentralized File Backup and Restore System uses GlusterFS across three Linux servers to provide

decentralized file redundancy, flexibility, and availability. By utilizing a load balancer, the system efficiently manages

API requests for file upload, browsing, and download, ensuring consistent performance and reliability. It features a user-

friendly interface and robust fault tolerance to ensure smooth operation even during certain levels of network disruptions.

With characteristics such as robustness, scalability, reliability, and flexibility, this system can be a better alternative to

traditional centralized storage solutions. The project aims to understand and implement decentralized file storage for

reliable and efficient file management.

KEYWORDS: Decentralized System; File Storage; GlusterFS; Linux Servers; API requests; Fault tolerance

I. INTRODUCTION

In today's world, everyone needs reliable and flexible file storage solutions. Traditional centralized storage systems often

suffer from vulnerabilities such as single points of failure, limited scalability, and loss of data accessibility. These

limitations highlight the necessity for distributed approaches for file storage.

Decentralized storage provides distributing files across multiple storage servers to enhance redundancy, reliability, and

fault tolerance. The goal is to develop a Decentralized File Backup and Restore System using GlusterFS, a scalable and

high-performance distributed file system. By decentralizing file storage across three Linux servers, the system aims to
eliminate the risks associated with central points of failure, ensuring that data remains accessible even in the event of a

certain level of server outages or network disruptions.

A critical component of this system is the integration of a load balancer, which evenly distributes API requests for file

upload, browsing, and download across the servers. This optimizes resource utilization and also handles traffic redirection

in case of network disruption.

The system provides a user-friendly GUI interface, allowing users to interact with the storage servers. Robust fault

tolerance mechanisms are built into the system, ensuring that it can continue to operate smoothly even during partial

network failures.

The project aims to provide a robust, scalable, reliable, and flexible decentralized storage solution. By demonstrating the
practical advantages of decentralized storage, the project seeks to implement these technologies for efficient file

management.

II. LITERATURE SURVEY

The landscape of decentralized file backup and restore systems encompasses various architectures and algorithms aimed

at enhancing robustness, scalability, reliability, and flexibility. Significant contributions in this domain include

advancements in hybrid storage systems, load-balancing models, and performance optimization techniques. Niu et al.

(2018) provide an extensive survey of hybrid storage systems, detailing architectures and algorithms that blend different

storage technologies to optimize performance and cost-effectiveness [1]. Xu et al. (2013) propose a load-balancing model

based on cloud partitioning for public cloud environments, which dynamically distributes workloads to enhance system
performance and reliability [2]. Hou et al. (2022) introduce a dynamic load balancing algorithm based on optimal

matching of weighted bipartite graphs, ensuring efficient load distribution across nodes [3]. Fu et al. (2015) focus on

performance optimization for managing massive numbers of small files in distributed file systems, essential for handling

 | DOI: 10.15680/IJIRCCE.2024.1205249 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 6645

diverse file sizes in decentralized storage [4]. Kim et al. (2023) analyze the performance of distributed file systems based

on RAID storage, underscoring the importance of RAID configurations in enhancing data redundancy and access speeds

[5]. Li and Shen (2017) investigate the scalability of Hadoop with remote and local file systems, providing insights into

selecting the best platform for decentralized storage needs [6].

Further contributions include Hsiao et al. (2013), who propose a load rebalancing technique for distributed file systems

in cloud environments, minimizing data migration and ensuring balanced resource utilization [7]. Song et al. (2022)

present IPFSz, an efficient data compression scheme for the InterPlanetary File System (IPFS), enhancing storage

efficiency and reducing data transmission costs [8]. Casino et al. (2020) analyze threats associated with immutability and

decentralized storage, highlighting security challenges and mitigation strategies [9]. Shafiq et al. (2021) propose a load-

balancing algorithm for data centers to optimize cloud computing applications, improving overall system efficiency and

performance [10]. These advancements in hybrid storage systems, dynamic load balancing, performance optimization,

scalability, and security are critical for developing robust and efficient decentralized file backup and restore systems,

laying the groundwork for future innovations in this field.

III. PROPOSED METHODOLOGY AND DISCUSSION

A. System Architecture:

The proposed Decentralized File Backup and Restore System is designed to leverage GlusterFS, a scalable and high-

performance distributed file system, to provide robust, reliable, and flexible storage. The system will be deployed across

three Linux servers, with each server acting as a storage node in the GlusterFS cluster. The methodology encompasses

several key components:

 GlusterFS Cluster: Three Linux servers will be configured to form a GlusterFS cluster, providing a unified and

distributed storage pool.

 Master-Slave Configuration: One server will act as the master node, orchestrating operations, while the other two

servers function as slave nodes, managing storage tasks.

 Load Balancing: A load balancer will be implemented to distribute incoming API requests for file upload, browsing,
and download evenly across the three servers. This ensures optimal resource utilization and prevents any single

server from becoming a bottleneck.

 API Development: RESTful APIs will be developed for key functionalities such as file upload, download, and

browsing.

 User Interface: A user-friendly web interface will be created to allow users to easily upload, download, and browse

files stored in the system.

 Fault Tolerance and Network Resilience: The system will include mechanisms to detect and handle network

disconnections, ensuring that file operations can resume seamlessly once connectivity is restored. Data replication

across multiple nodes will further enhance fault tolerance.

 Fig.1. Architecture Design

 | DOI: 10.15680/IJIRCCE.2024.1205249 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 6646

B. Discussion:

The proposed methodology aims to address the limitations of traditional centralized storage systems by leveraging the

decentralized architecture of GlusterFS. This approach not only enhances data redundancy and availability but also

provides a scalable solution that can grow with increasing data demands.

The integration of a load balancer ensures that the system can handle a high volume of API requests without degradation

in performance, making it suitable for environments where data accessibility and reliability are critical. By distributing

the storage load across multiple servers, the system can efficiently manage resources and avoid the pitfalls of single

points of failure.

The development of secure and efficient APIs for file operations is crucial for user interaction with the system. These

APIs, combined with a user-friendly interface, make the system accessible to users of varying technical expertise,

promoting broader adoption of decentralized storage technologies.

Fault tolerance and network resilience are key features that distinguish this system from traditional storage solutions. By
ensuring that the system can withstand network disruptions and recover gracefully, we enhance the reliability and

robustness of the storage infrastructure.

This project demonstrates the feasibility and advantages of decentralized storage solutions. The proposed system not only

addresses current challenges in data storage but also sets the stage for future innovations in the field. By promoting the

use of decentralized storage technologies, this project contributes to the advancement of secure, reliable, and efficient

file management practices.

IV. IMPLEMENTATION

In the implementation section, we detail the architectural setup and operational flow of the Decentralized File Backup

and Restore System, emphasizing key components such as the distributed file system using GlusterFS, the Load Balancer,
API Servers, Backend Services, and the user interface. Firstly, we provide an overview of the distributed file system

architecture powered by GlusterFS, highlighting its decentralized approach to data storage and management. Next, we

delve into the interconnectedness of the Load Balancer, API Servers, and Backend Services, elucidating their roles in

facilitating efficient file operations and load distribution. Finally, we discuss the user interface, emphasizing its web-

based nature and its functionality in enabling users to seamlessly upload, browse, and download files stored within the

decentralized system. This comprehensive overview sets the stage for a detailed exploration of each component's

implementation and operational intricacies, underscoring the system's robustness, scalability, and user-centric design

 Fig.2. Distributed file synchronization using Glusterfs

 | DOI: 10.15680/IJIRCCE.2024.1205249 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 6647

Fig.3. Load Balancer, API Servers and Backend Services

In Fig-2, we depict the architecture of the distributed file system leveraging GlusterFS, showcasing its operational
mechanism. GlusterFS operates on a distributed model, where data is stored across multiple nodes within a cluster. Each

node contributes storage capacity, forming a unified storage pool accessible to users. The system utilizes a replicated or

distributed volume configuration, ensuring data redundancy and fault tolerance. GlusterFS employs a flexible

architecture, allowing seamless addition or removal of nodes to accommodate changing storage requirements. Data is

distributed and replicated across nodes using a distributed hash table (DHT) algorithm, ensuring balanced data placement

and efficient utilization of resources. This distributed approach enhances scalability and resilience, making GlusterFS

well-suited for decentralized file storage solutions.

In Fig-3, we illustrate the interconnection between the Load Balancer, API Servers, and Backend Services, delineating

their roles and interactions within the system. The Load Balancer serves as a centralized entry point for incoming API

requests, distributing them across multiple API servers to ensure load balancing and optimal resource utilization. API
Servers host the application programming interfaces (APIs) responsible for handling file upload, browsing, and download

requests from users. These servers communicate with the Backend Services, which manage the underlying file storage

and retrieval operations. The Load Balancer dynamically routes requests to available API Servers, enabling horizontal

scalability and fault tolerance. This architecture facilitates seamless communication between frontend and backend

components, ensuring efficient and reliable file management functionalities.

The web-based User Interface (UI) serves as the primary interaction point for users, providing intuitive access to file

management functionalities such as upload, browsing, and download. Users can upload files by selecting them through

the UI, which initiates the file transfer process to the backend storage system. The UI presents a navigable file directory

structure, allowing users to browse and locate stored files with ease. Additionally, users can initiate download operations

directly from the UI, retrieving files from the backend storage for local access. The UI's responsive design and user-

friendly features enhance accessibility, empowering users to efficiently manage their files within the decentralized
storage environment.

V. RESULTS

The implementation of the Decentralized File Backup and Restore System using GlusterFS has yielded promising results

across various facets of its functionality. The system demonstrated exceptional performance and scalability, effectively

distributing API requests through the integrated load balancer across the GlusterFS cluster. Load balancing techniques

ensured that no single node was overloaded, maintaining optimal performance even during peak usage. This robustness

underscores the system's ability to handle high volumes of data transactions efficiently, catering to diverse user demands.

Moreover, the system's emphasis on data redundancy and availability was evident in its fault tolerance mechanisms.

GlusterFS's data replication capabilities ensured that data remained accessible even in the event of server failures or
network disruptions. During testing, the system showcased its resilience by seamlessly redirecting requests to available

nodes and automatically recovering from temporary outages. Such reliability is essential for mission-critical applications

where data accessibility is paramount.

Lastly, user feedback on the system's user interface and usability was overwhelmingly positive. The intuitive web

interface facilitated smooth navigation and simplified file management tasks for users. Features such as file browsing,

 | DOI: 10.15680/IJIRCCE.2024.1205249 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 6648

upload, and download were seamlessly integrated, enhancing the overall user experience. Furthermore, the system's

responsiveness and stability garnered praise from users, indicating high levels of satisfaction with its performance. These

results affirm the system's efficacy in delivering a user-friendly and reliable decentralized storage solution.

VI. CONCLUSION AND FUTURE WORK

The implementation of the Decentralized File Backup and Restore System using GlusterFS has proven to be a robust and

effective solution for modern data storage challenges. By distributing data across three Linux servers, the system

enhances data redundancy, flexibility, and availability, significantly mitigating the risks associated with traditional

centralized storage systems. The integration of a load balancer ensures optimal performance by evenly distributing API

requests, thereby maintaining system reliability even under heavy loads. The user-friendly interface simplifies file

management tasks, making the system accessible and easy to use. Overall, the project successfully demonstrates the

viability and advantages of decentralized storage solutions, offering a compelling alternative for secure and efficient file

management.

Looking ahead, several enhancements can further improve the system's capabilities and performance. Extending fault

tolerance by distributing nodes geographically would enhance resilience against regional outages and improve access

speeds for a global user base. Advanced load balancing techniques, such as dynamic load balancing, can optimize

resource utilization by adjusting to real-time server load and network conditions. Implementing auto-scaling mechanisms

will allow the system to automatically adjust the number of nodes based on current demands, ensuring cost-efficiency

and optimal performance. To enhance user experience, developing a mobile application would provide users with

convenient access to the system from their smartphones and tablets. Further improvements to the web interface, such as

adding file preview, versioning, and collaborative tools, would increase functionality and user satisfaction. Security can

be bolstered by implementing advanced encryption techniques and integrating intrusion detection systems to monitor and

mitigate potential threats in real time. Comprehensive monitoring and analytics tools will provide valuable insights into

system performance, storage utilization, and network health, enabling proactive management and optimization. Finally,

enabling interoperability with popular third-party applications and cloud services will facilitate seamless data transfer
and management across various platforms, broadening the system's applicability and user base. By implementing these

enhancements, the Decentralized File Backup and Restore System can become even more robust, scalable, and user-

friendly, solidifying its position as a leading solution for decentralized data storage.

REFERENCES

1. J. Niu, J. Xu, and L. Xie, "Hybrid Storage Systems: A Survey of Architectures and Algorithms," in IEEE Access, vol. 6,

pp. 13385-13406, 2018, doi: 10.1109/ACCESS.2018.2803302.

2. G. Xu, J. Pang, and X. Fu, "A load balancing model based on cloud partitioning for the public cloud," in Tsinghua Science
and Technology, vol. 18, no. 1, pp. 34-39, Feb. 2013, doi: 10.1109/TST.2013.6449405.

3. W. Hou, L. Meng, X. Ke and L. Zhong, "Dynamic Load Balancing Algorithm Based on Optimal Matching of Weighted
Bipartite Graph," in IEEE Access, vol. 10, pp. 127225-127236, 2022, doi: 10.1109/ACCESS.2022.3226885.

4. S. Fu, L. He, C. Huang, X. Liao, and K. Li, "Performance Optimization for Managing Massive Numbers of Small Files in
Distributed File Systems," in IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 12, pp. 3433-3448, 1

Dec. 2015, doi: 10.1109/TPDS.2014.2377720.
5. J. Kim, H. -J. Yu, H. Kang, J. -H. Shin, H. Jeong and S. -Y. Noh, "Performance Analysis of Distributed File System Based

on RAID Storage for Tapeless Storage," in IEEE Access, vol. 11, pp. 116153-116168, 2023, doi:
10.1109/ACCESS.2023.3324959.

6. Z. Li and H. Shen, "Measuring Scale-Up and Scale-Out Hadoop with Remote and Local File Systems and Selecting the
Best Platform," in IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 11, pp. 3201-3214, 1 Nov. 2017,

doi: 10.1109/TPDS.2017.2712635.
7. H. -C. Hsiao, H. -Y. Chung, H. Shen and Y. -C. Chao, "Load Rebalancing for Distributed File Systems in Clouds," in IEEE

Transactions on Parallel and Distributed Systems, vol. 24, no. 5, pp. 951-962, May 2013, doi: 10.1109/TPDS.2012.196.
8. M. Song, J. Han, H. Eom and Y. Son, "IPFSz: An Efficient Data Compression Scheme in InterPlanetary File System," in

IEEE Access, vol. 10, pp. 122601-122611, 2022, doi: 10.1109/ACCESS.2022.3223107.
9. F. Casino, E. Politou, E. Alepis, and C. Patsakis, "Immutability and Decentralized Storage: An Analysis of Emerging

Threats," in IEEE Access, vol. 8, pp. 4737-4744, 2020, doi: 10.1109/ACCESS.2019.2962017.
10. D. A. Shafiq, N. Z. Jhanjhi, A. Abdullah and M. A. Alzain, "A Load Balancing Algorithm for the Data Centres to Optimize

Cloud Computing Applications," in IEEE Access, vol. 9, pp. 41731-41744, 2021, doi: 10.1109/ACCESS.2021.3065308.

 8.379

