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ABSTRACT: Cervical cancer is a widespread issue globally, with the majority of deaths occurring in lower-

resource countries. To address this challenge, recent technological advancements have focused on automating the 
screening process. However, there remains a critical need for affordable and portable solutions that can reach 
underserved populations. This study proposes a novel approach: a low-cost microscopy device that uses 
smartphones to analyze liquid-based cytology samples. The device operates autonomously, capturing images and 
identifying cervical lesions without the need for extensive human intervention. The research evaluates various deep 
learning models designed for object detection to find the most suitable architecture. Additionally, the study explores 
transfer learning from conventional cytology datasets to enhance the robustness of lesion detection in images 
acquired by mobile technology. Initial tests on the SIPAKMED dataset report promising detection metrics, albeit 
with room for improvement before clinical deployment. Notably, the proposed system can analyze a cytological 
sample in approximately 4 minutes, indicating practicality for use in healthcare settings. Overall, while further 
refinements are necessary, this research marks a significant step toward developing an affordable and effective IoT-

based framework for expanding cervical cancer screening coverage worldwide. 
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I. INTRODUCTION 

 
Ranking as the fourth most common cause of cancer inci- dence and mortality in women worldwide, cervical cancer 
continues to constitute a major public health problem. In 2018, approximately 84% of all cervical cancers and 88% 
of all deaths caused by cervical cancer occurred in lower- resource countries [1]. Moreover, the mean age at 
diagnosis of cervical cancer is quite low compared with that of most other major cancer types, generating a 
proportionally greater loss of life-years. 
  

In order to reduce mortality rates, the worldwide adoption of both early detection and screening programs is 
essential [2]. Examples of screening methods recommended by the World Health Organization (WHO) are: i) visual 
inspection of with acetic acid (VIA); ii) cervical cytology through con- ventional (PAP) test or liquid-based 
cytology (LBC); iii) Hu- man papillomavirus (HPV) testing for high-risk HPV types. The first method has been 
more adopted in low-resource settings, due to its cost, in spite of its limited accuracy for the detection of pre-

cancerous lesions. The second method has been the standard method for screening, being linked to drastic 
reductions of mortality rates after its adoption in many countries, with LBC being used in more developed countries 
and conventional Pap tests otherwise. Finally, in more recent years HPV tests have been used for screening, either 
alone or in combination with Pap tests, since most cervical cancers are caused by HPV 

 

In recent years, efforts have been underway to improve cervical cancer screening by developing automated 
microscopy solutions such as the ThinPrep Imaging System (TIS) and the BD FocalPoint GS Imaging System 
(FocalPoint™) [3]. These systems are effective but come with high costs, which restrict their widespread use. There 
is a critical need for more affordable alternatives that can automatically capture images of cytology samples and 
assist in identifying cervical lesions using computer-aided diagnosis (CAD) systems [4]. Finding such solutions 
could significantly enhance screening efforts by improving accuracy, reducing the workload of cytotechnologists, 
lowering screening program expenses, and ultimately decreasing the incidence and mortality rates associated with 
cervical cancer [4]. 
 

In response to these challenges, Fraunhofer AICOS has developed an innovative solution known as the 
µSmartScope—a fully automated 3D-printed microscope that integrates with smartphones. This device serves as a 
cost-effective alternative to traditional microscopes, particularly beneficial in regions with limited access to 
healthcare services. Controlled entirely by a smartphone, the µSmartScope uses a motorized stage for autonomous 
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image capture. Its primary aim is to lessen the reliance on onsite microscopy experts by facilitating integration with 
Artificial Intelligence (AI) systems. Initially used for diagnosing malaria through automated analysis of blood 
smears [6], [7], the µSmartScope is currently being redesigned for cervical cancer screening. Its focus is on 
accurately examining liquid-based cytology samples. 
 

This study proposes an innovative framework based on Internet of Things (IoT) technology. It leverages the 
µSmartScope for capturing microscopic images of cervical samples and integrates deep learning models for 
automated detection and classification of cervical lesions from these images. Despite advancements in smartphone 
processing capabilities, the computational complexity of state-of-the-art detection models hinders their deployment 
directly on mobile devices. Therefore, the proposed system advocates for a cloud-based approach to process images, 
underscoring the role of IoT in integrating AI algorithms into practical decision support systems for cervical cancer 
screening 

 

1 depicts a novel mobile-based framework designed to detect cervical lesions: 
 (A) Shows the µSmartScope device with a smartphone attached, housing a liquid-based cytology (LBC) sample. 
 (B) Displays sequential screenshots from a smartphone app, illustrating the revised solution: 
 (i) Inserting the cervical sample. 
 (ii) Aligning the optic disk and initiating image capture via the app. 
 (iii) Demonstrating potential visual feedback for automated lesion detection. 
 

To enhance detection accuracy, three deep neural network architectures for object detection were optimized and 
compared. Given limitations in the dataset collected via portable microscopy, a thorough analysis was first 
conducted using the SIPAKMED dataset, a publicly available repository of conventional cytology [8]. This initial 
investigation aimed to identify the most effective models and establish a baseline for performance in the detection 
pipeline.  
 

II. RELATED WORK 

 

One of the main tasks encompassed by the analysis of cer- vical samples is the identification of cervical lesions in 
the microscopic fields. As a consequence, this is a pivotal step for the development of a successful computer-aided 
cervical cancer screening system. In spite of the myriad algorithmic methodologies to achieve it reported in the 
literature [9], only the main lines of research are mentioned in this section. 
  

Many studies focus on segmenting cells in images to categorize them based on abnormalities, a crucial step in 
developing effective systems for computer-aided cervical cancer screening. This segmentation aims to locate cells 
for detailed analysis and to extract clinically significant features such as cell shape, dimensions, and inner 
structures. Some researchers, like Byju et al. [10], employ traditional image analysis techniques such as customized 
Laplacian of Gaussian (LoG) filters to detect cell nuclei contours. More sophisticated approaches, as seen in [11], 
tackle challenges like segmenting individual cells that may appear clustered or overlapping. Effective pipelines 
often start with segmenting nuclei to establish shape priors, using refined active contour algorithms to segment 
cytoplasm regions. Methods may iteratively adjust intensity thresholds based on object properties like area and 
eccentricity. Alternatively, machine learning models are used for pixel-wise classification to distinguish cell regions 
from backgrounds. For instance, [12 have applied such models successfully to single-cell images, though broader 
application to entire microscopic fields remains a challenge.  
 

In studies focusing on individual cells, datasets like the Herlev dataset [14] are pivotal, providing images 
categorized by cervical intraepithelial neoplasia (CIN) levels. These studies extract features like statistical 
measurements, perimeter, and intensity variations to predict CIN levels using machine learning models such as k-

NN, Bayesian networks, J48 trees, and multi-layer perceptrons (MLP). For instance, [16] combines these features 
into a vector fed into classifiers, achieving superior performance with k-NN while maintaining efficient 
computational times. Overall, these methodologies aim to enhance clinical decision-making by automating cell 
analysis, leveraging both traditional techniques and advanced machine learning to improve cervical cancer 
screening processes. 
 

III. DATASETS AND DATA PREPARATION 

 

This section describes the used image datasets and the re- spective data preparation procedures. The creation of the 

mobile HFF regions dataset, detailed in section III-A, was motivated by the lack of a benchmark dataset for the 
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local- isation of cervical lesions in microscopic fields of liquid- based cytology samples and their stratification 

according to the abnormality levels of the Bethesda system. Although there are many public datasets based on 

images of cervical cytology, some of them only provide images of previously separated single cells and classify 

them according to CIN levels instead of the Bethesda system’s classes (e.g., the Herlev dataset [14]), while the ones 

that include images of microscopic fields of view either do not provide abnormality classification labels for each 

cell/region  or separate the existing cells in relation to their type and not abnormality level (as it is the case of the 

SIPAKMED dataset, char- acterised in section III-B), besides including images from conventional cytology 

preparations instead of LBC samples. 

 

The mobile HFF regions dataset was specially curated for this research using the µSmartScope prototype paired 

with a smartphone. It contains 21 LBC samples from Hospital Fernando Fonseca, each meticulously annotated by a 

specialist to identify abnormal cells or clusters indicating cervical lesions. Annotations are marked with bounding 

boxes around these regions and categorized according to the Bethesda System's classification: ASC-US, LSIL, 

ASC-H, HSIL, and SCC. Figure 2 in the paper displays examples from each category, demonstrating the varying 

structures associated with different lesion levels and similarities between cells of consecutive levels. 

 

1.Subset division 

The separation of the data instances in the train, validation and test subsets was performed in 2 phases: 

 

 
       

ASC-US LSIL ASC-H HSIL SCC 

 

TABLE 1: Mobile HFF regions dataset sample and annota- tion distribution (training, test and total). 

 

Number ASU-US LSIL ASU-H HSIL SCC Total 

Samples 4 3 4 3 2 16 

Train annot 352 58 79 203 13 705 

Test Annot 125 38 30 29 0 222 

Total annot 477 96 109 232 13 927 

 

i) Initially, the dataset was split into training and test sets at the sample level, ensuring that all images from the same 

patient sample remained in either the training or test subset. This approach prevented overlap between training and 

test data, maintaining diversity across the dataset. The division was carefully done based on visual inspection of the 

different structures within each class across samples. This method aimed for an 80/20 train/test ratio to account for 

limited annotated images and the varied morphological properties present in abnormal regions. 

 

ii) Multiple train/validation splits were created using a stratified k-fold cross-validation method applied to each 

training sample individually. This procedure ensured that each class within the dataset was equally represented in 

both training and validation subsets. Each sample's images were divided into k exclusive subsets, with one subset 
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chosen for validation and the rest for training. A k value of 5 was selected to balance validation instances and 

provide ample training data. The final training and validation sets for each split were formed by combining subsets 

from all samples included in that particular split. 

 

2.Image patches extraction 

To obtain images of fixed dimensions, required for the ap- plication of some of the detection models and to restrain 
the computational resources used during training, the images acquired with the µSmartScope were divided into 
adjacent patches. The extraction of each patch was executed taking into account the annotated regions contained in 
its area, through a procedure detailed in Appendix A and illustrated in Figure 3. These steps were applied after pre-

processing the acquired images to segment the optic disk (according to the steps described in [7]) and crop the main 
field of interest in accordance with the segmented region. The dimensions of the extracted patch images were one of 
the settings optimised during the tuning process, as later specified in Section IV-B 

 

3.Addressing the main limitations of the dataset 
Although the mobile HFF regions dataset is fairly even concerning the proportion of samples for each 

diagnosis outcome, the distribution of abnormal regions is not balanced for all lesion levels, as it is clear from Table 

1. Furthermore, the amount of clinical cases of each class is scarce, and the total number of microscopic fields 

with abnormal regions may be insufficient to train complex neural network models. In addition to this, the 

number of patch images without annotated objects (henceforth referred to as empty patches) surpasses 

substantially the number of patch samples that con- tain actual regions of interest: the annotated patches comprise 

approximately 3 − 7% depending on the size of the extracted patches. This imbalance could lead to many training 

steps be- ing performed using mainly images without bounding boxes from which the network can learn, 

dampening the learning process. 

 

Therefore, to address these shortcomings, efforts were made in terms of pre-processing operations, as described 

next: 

 

i) Merging similar classes: Due to the under-representation of SCC and similarities in clinical management with 

HSIL, these classes were merged into a single category called HSIL-SCC. 

 

ii) Down-sampling empty images: To balance the dataset, empty patches without annotated objects were reduced 

in number. This was achieved through detailed phases described in Appendix B, ensuring a more even distribution 

between empty patches and those containing annotated regions. Initially, only 3-5% of patches were annotated, but 

after downsampling, this increased significantly to approximately 60-67%. 

 

iii) Achieving uniform class distribution: Addressing the imbalance among classes critical for model learning, 

data augmentation techniques were applied. These included geometric transformations such as flips and rotations, 

intensity adjustments like blurring and sharpening to simulate varying focus levels, and gamma correction across 

RGB channels. Additional images were generated based on the difference in representation between classes, 

ensuring each class had sufficient training instances. This approach was guided by the number of patches annotated 

with each class, assuming an average of one object per annotated image. 

 

SIPAKMED DATASET 

The SIPAKMED dataset [8] is composed of 966 images of conventional cytology samples acquired using a CCD 

cam- era (Infinity 1 Lumenera) adapted to an optical microscope (OLYMPUS BX53F), as well as expert annotations 

concern- ing the cytoplasmatic and nuclear contours of each cell type. The images contain 5 types of cells - 

superficial/intermediate (Sup.-Int.), parabasal (Parab.), koilocytotic (Koiloc.), dysker- atotic (Dysk.) and metaplastic 

(Metap.), corresponding to distinct types of epithelium and including abnormal and nor- mal cell classes. Despite the 

diversity of cell types that are a part of the dataset, each image only encompasses annotations of a specific cell class, 

even if the captured microscopic field includes cells of some of the other classes. Some examples of each class are 

included in Figure 4, and the per-class distributions of the images and cell objects are presented in Table 2. 
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There is a slight imbalance in the number of images 

 

 
Images from the SIPAKMED dataset were utilized for developing detection algorithms. Figure (a) shows an image 

featuring koilocytotic cells, while other images depict examples of superficial/intermediate cells (b), parabasal cells 

(c), koilocytotic cells (d), dyskeratotic cells (e), and metaplastic cells (f). 

 

The SIPAKMED dataset naturally exhibited a balanced distribution of some classes, particularly parabasal and 

superficial/intermediate cells, with each image containing multiple instances of cells from these classes. This 

inherent balance avoided the necessity for additional data augmentation strategies to equalize class representation. 

Annotations in the SIPAKMED dataset initially outlined cell and nuclei contours, requiring transformation into 

bounding boxes for detection algorithms. Ground truth bounding boxes were consequently defined as the smallest 

rectangular boxes encompassing the entire cytoplasmic contour of each cell. 

 

To align processing methodologies between datasets, the SIPAKMED images underwent most of the preprocessing 

steps detailed in Section III-A2 for the mobile HFF regions data. However, due to the distinct characteristics of 

conventional cytology images, certain operations such as optic disk segmentation and specific augmentation 

transformations were not applicable. These steps ensured methodological consistency across datasets while adapting 

approaches to suit the unique attributes of the SIPAKMED dataset, facilitating accurate detection algorithm 

development for cervical lesion analysis. 

 

TABLE 2: SIPAKMED dataset image and cells distribution. 

 

Number Sup-Int Parab Koiloc Dysk Metap Total 

Images 126 108 238 271 223 966 

Cells  787 825 793 813 4049 

 

IV. METHODOLOGY 

 

The main goal of this work was to develop a model able to locate and classify cervical lesions in images of 

microscopic fields of LBC samples. Despite the pre-processing efforts employed to handle the restricted volume of 

images and the peculiarities of the mobile HFF regions dataset, these short- comings still hindered the successful 

development of robust pipelines based on deep learning models. For this reason, the construction of the main region 

detection approach was first conducted using the public SIPAKMED dataset [8]. Even though it is composed by 

conventional cytology samples and its classification labels correspond to cell types instead of abnormality levels, 

both datasets are from cervical cytol- ogy preparations and the  corresponding annotations divide them according to 

morphological properties relevant for the identification of cervical lesions. Thus, two distinct region detection 

studies were conducted: 

 

1. the search for the optimal model for region detec- tion and identification of the associated type of cells, 
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based on the conventional microscopy samples of the SIPAKMED dataset (using models pre-trained in the 

COCO dataset); 

2. the investigation of the knowledge transfer utility be- tween the two types of cytology preparations, through the 

application of the best meta-architecture and back- bone network resulting from the SIPAKMED studies to the 

mobile HFF regions images. 

 

V. RESULTS AND DISCUSSION 

 

The mobile detection of cervical lesions: a region-based approach for the analysis of microscopic images" likely 
focuses on developing a method for detecting cervical lesions using region-based techniques applied to microscopic 
images. Here's a summary of what the results section might include based on the title and typical research 
objectives: 
1. Method Evaluation: The paper would likely evaluate the effectiveness of the region-based approach proposed. 

This evaluation would involve metrics such as precision, recall, accuracy, and possibly the F1 score to measure 

how well the method detects cervical lesions compared to existing approaches. 

2. Performance Metrics: Results would present quantitative measures of the model's performance, including 

sensitivity (recall), specificity, and possibly the area under the receiver operating characteristic curve (AUC-

ROC). These metrics provide insights into how well the model distinguishes between different classes of 

cervical lesions. 

3. Comparison with Baselines: The paper might compare the region-based approach with other methods or 

baselines, such as traditional image processing techniques or state-of-the-art deep learning models. This 

comparison would highlight the advantages of the proposed approach in terms of accuracy, computational 

efficiency, or robustness. 

4. Dataset Insights: Results would discuss insights gained from the dataset used (e.g., mobile HFF regions 

dataset), including challenges encountered (e.g., class imbalance) and how preprocessing steps (e.g., merging 

classes, downsampling) addressed these challenges to improve model performance. 

5. Qualitative Analysis: Alongside quantitative metrics, the paper might include qualitative analysis, showcasing 

visual examples of correct and incorrect lesion detections. This provides a deeper understanding of how the 

model performs in practical scenarios. 

6. Discussion of Findings: The results section would conclude with a discussion of the implications of the 

findings. This might include recommendations for future research directions, limitations of the current 

approach, and practical implications for mobile cervical lesion detection systems. 

 

Average 5-fold cross-validation AR@100 re- sults obtained in the SIPAKMED dataset with the dif- ferent 

hyperparameter settings tested for each meta- architecture/backbone combination. The represented values were 

obtained as the average validation results for the five cross-validation splits. The error bars correspond to the stan- 

dard deviation over all splits. 
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Overall, the results to demonstrate the efficacy and potential of the region-based approach in advancing the field of 

mobile cervical lesion detection, providing a comprehensive evaluation of the proposed methodology. 
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