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ABSTRACT: Unmanned aerial Vehicles also known as drones are applied widely. Drones can identify human 
activities in videos but face challenges due to camera issues and limited data. This paper proposes a method combining 
data manipulation and a special technique to create more training data. This technique produced very accurate results 
using real-world videos. 
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I. INTRODUCTION 

 

Drones have transitioned from primarily military use to various civilian applications in smart cities. They offer 
advantages like being autonomous, fast, and cost-effective. Drones are employed in video surveillance, research, 
security, rescue, and disaster management. They can improve efficiency, security, and general well-being in urban 
environments, and They have a lot of potential for transforming smart cities. 
 

It can take a long time and be expensive to gather and categorize the large amount of training information required for 
deep being an able to recognize human activity in drone videos. Unbalanced data might also reduce the effectiveness of 
models. Researchers use strategies for data augmentation, such as more recent approaches like GANs and more 
conventional methods, to get over these obstacles.  
 

This paper suggests a hybrid strategy to produce helpful features for the classification of actions in aerial videos by 
combining data transformation and GAN-based techniques. This method generates precise sets of features that capture 
the attributes of various actions by conditioning GANs on particular class levels. Accurate action recognition and 
classification can be achieved by training SoftMax classifiers with the CNN-LSTM functionalities that were created. 
This technique overcomes the shortcomings Some video examples produced using GANs while lowering computing 
complexity. The study is organized into sections that provide an overview of relevant literature, the suggested 
methodology, findings from the experiment, and conclusions. 
 

II. RELATED WORKS 

 

Spotting human actions in videos (HAR) is a hot topic in computer vision. Techniques have come a long way, 
eschewing manually created features to deep learning that automatically learns what to look for, making HAR much 
more powerful. 
 

2.1 Handcrafted Methods 

Previous research on human action recognition (HAR) relied on manually created characteristics that are determined by 
video footage. Three groups can be formed from these techniques: 
 

1. Body model-based approaches: extract outline of the human body for computation skeleton or reconstruct 3D pose. 
2. Holistic approaches: depict overall body dynamics using silhouette or optical flow/gradient-based methods. 
3. Local feature-based approaches: use Interest Points (IPs) and bag-of-words (BOW) representation to efficiently 
represent actions. 
 

However, handcrafted methods have limitations, such as: 
- Relying on specific assumptions 
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- Insufficient generalization and resilience capabilities mean that a model or system doesn't do well in unfamiliar 
situations., unseen data or in different conditions than it was trained on. It struggles to adapt and maintain accuracy 
outside of its initial training environment. 
 

These limitations can be defeated with deep learning methods, which can learn features automatically and improve 
performance. 
 

2.2 Deep Learning techniques  
In human action recognition (HAR), deep learning techniques—in particular, Convolutional Neural Networks (CNNs) 
and Recurrent Neural Networks (RNNs)—have demonstrated effectiveness. RNNs and Networks using Long Short-
Term Memory (LSTM) are better when obtaining temporal characteristics than CNNs are at extracting spatial features. 
However, CNNs struggle with temporal changes in human behavior, and RNNs face challenges with long sequences. 
Combining CNNs and LSTMs has shown promise, but limited aerial datasets have hindered their application in 
identification of airborne action. 
 

This work tackles the problem of having too little and unbalanced data by proposing to use CNN-LSTM models along 
with the augmentation of data strategies. The CNN-LSTM model can be trained more successfully to identify actions in 
aerial movies by increasing the quantity and variety of data. 
 

2.3 Data Augmentation 

Enhancing HAR systems through the augmentation of data is essential, particularly when dealing with tiny datasets. 
Simple transformations and sophisticated deep learning techniques are the two basic approaches for doing this. 
 

Basic methods such as combining photos, cutting portions of films, and altering features are examples of simple 
transformations. Nevertheless, more advanced methods, like the use of Generative Adversarial Networks (GANs), can 
produce artificial information that closely resembles the original. Creating synthetic films, transforming photos into 
other styles, and growing the dataset are all made possible by GANs. GANs, however, can struggle with extremely 
particular data or uneven quality. 
 

We focus on improving HAR systems in this work by using both simple transformations and features generated by 
GANs. The AugLy package is used for simple transformations, while GANs are used to create synthetic data. 
Combining these techniques results in training data that is more varied and realistic, which enhances system 
performance. 
 

III. SUGGESTED METHOD 

 

1. Basic Transformations: We employ easy methods to make the most out of our small dataset. 
2. Data Preprocessing: We clean and prepare the unprocessed data for analysis. 
3. Feature Extraction: We use CNN-LSTM and 2D CNN to analyse every frame additionally pull-out important details. 
4. Motion Processing: We use LSTM to understand the movement patterns and long-term  
relationships in the data. 
5. Synthetic Data Generation: We use WGAN to create extra features, making our dataset bigger. Finally, we classify 
actions using an activation of SoftMax function. 
 

 

                          
Figure 1: The suggested method for identifying motions made by people in films taken from above. 
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3.1. Phase 1: Data Enrichment  
Techniques to enhance data are used to make the dataset bigger and stop the model from overfitting. The AugLy library, 
which has many ways to change both space and time in videos, is perfect for testing how strong a model is. We chose 
four techniques to deal with the complexities of aerial videos: adding different backgrounds, blurring, changing 
brightness as well as increasing Nois. These techniques assist the model navigate obstructions, shifting illumination, 
and other difficulties in aerial footage by simulating changes in the real world. We are able to exercise more dependable 
model by intentionally growing the dataset. 
 

3.2. Phase 2: Initial processing 

Three procedures were taken to able to pre-process aerial films in relation to human activities recognition:  
i) Removing frames from videos t2o0 compile a list of distinct pictures. 
ii) putting 20 as the sequence duration and resizing the components of a specified height and width(224x224).  
iii) Setting values of pixels ranging from 0 to 1 to a normal 
By preparing the information for additional processing, these actions improved the suggested model's efficiency. We 
can increase the precision of the model by properly structuring the data. 
 

3.3. Phase 3: Highlight Deletion 

Our system uses a combination of two categories of neural networks: CNN (Convolutional Neural Network) and LSTM 
(Long Short-Term Memory) to analyse footage. The CNN looks at every in the video's frame to understand the spatial 
features (like shapes and objects), while the LSTM helps understand the temporal features (how things change over 
time). Figure 2 shows In our scenario, how these two networks cooperate. 
 

 

 

Figure 2. CNN-LSTM architecture model. 
 

3.3.1 Extraction of Spatial Features 

We use a neural network type called a 2D-CNN (2D Convolutional Neural Network) to analyze action videos taken 
from above. The 2D-CNN looks at 20 frames from every video to identify spatial features like, corners, edges and 
textures. It does this by applying filters to the frames. Because of hardware limitations, we designed our network with 
four layers for detecting features, four layers for reducing the size of the data, and an output layer that classifies the 
features. 
 

In simple terms, CNNs are great at finding details in individual frames, while LSTMs (Long Short-Term Memory 
networks) are better at understanding how things change over time. Our combined model, which blends the two CNNs 
and LSTMs, effectively captures both the spatial details and temporal changes in video data. Figure 2 displays how the 
model is organized. 
 

3.3.2 Temporal Feature Extraction 

While CNNs are great at extracting details from single frames, they aren't as good at understanding how things change 
over time. To handle this, we use One kind of RNN intended for sequences are Long Short-Term Memory (LSTM) 
networks. LSTMs are more skilful than average RNNs in resolving problems that crop up during long sequence 
processing.  
 

An LSTM has three gates—input, forget, and output—that help it manage information over time. 
In our system, we use 32 units in an LSTM are displayed in Figure 3. We feed the spatial characteristics retrieved by 
the 2D-CNN into the LSTM to understand how these features change over time. By combining CNNs and LSTMs, the 
video data's temporal and spatial components can both be captured by our approach. 
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The difficulty of our hybrid approach is determined by the sum of the complexity of the CNN and LSTM layers. The 
following formula can be used to calculate our model's complexity.: O (d × nl × nl-1 × sl × ml + w × i × e), where: 
- The convolutional layer count is d1, 
- The number of kernels is nl, 
- nl-1 represents the quantity of input channels, 
- sl the kernel's size, 
- ml is the output characteristic map's size, 
- I represent the input length;  
- w is the quant of LSTM weights; 
- where i represents input length. 
- One factor connected towards LSTM units is e. 
 

In simpler terms, the formula helps us understand how complex our model is according to the quantity of components.    
 

 

 

Figure 3. Diagram showing how a long-term memory cell works 

 

Phase 4:  WGAN for Producing Artificial Features 

We use a model called WGAN-GP to create artificial features based on the spatial and temporal features we extracted 
earlier. The WGAN-GP model has two parts: a generator and a 

discriminator. 
 

 

  
Figure 4. An example of the WGAN-GP model. 

 

The generator in our system starts with random noise and a class label to produce artificial features. The discriminator 
then compares both artificial and genuine features along with a class label to see how different they are.  
 

We use WGAN-GP because it works better than the original GAN, being more stable and faster to train. WGAN-GP 
uses a gradient penalty to keep the discriminator in check, preventing unstable training and helping the model learn 
more quickly and reliably. 
 

Phase 5: Action Classification 

Actions are classified using CNN-LSTM and WGAN-GP features. The dense layer's output size matches the number of 
classes. SoftMax activation determines the highest-likelihood class. 
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IV. EXPERIMENTS AND RESULTS 

 

We use 400 clips from 8 different actions in the YouTube 7 Aerial dataset to test our human action detection algorithm. 
We analyse the results and compare them with state-of-the-art techniques. 
 

Dataset 
For the examination of aerial videos, the dataset for YouTube Aerial is an invaluable tool, with 50 videos per action, 
each with 320x240 pixels and FPS of 25 are used. 
 

Implementation Setup 

We conduct tests with a V100 Tesla and Google Colab-Pro+ and 52 GB RAM. We use Python 3, Jupyter Notebook, 
Tensorflow, and Keras. We extract 20 frames per video, resize inputs to 224x224x3, and fundamental methods for 
augmenting data. We divide the dataset (80%, 20%, and 20%, respectively) within sets for testing, validation, and 
training. 
 

Table 1. CNN-LSTM model hyperparameters that are suggested. 
 

Parameter Values 

 frame resizing input 224 ×224 ×3 

quantity of CNN tiers 4 

Filter sizes 16, 32, 64, and 128 

 Amount of the Kernel 3×3 

Max pooling Yes 

The quantity of LSTM units 32 

Epochs 100 

Quantity in batch 30 

Enhancer Adam 

Loss function loss of Categorical cross-entropy  
Dropout rate 0.25 

 

 

                                 
Table 2. WGAN generator hyperparameters. 

 

Parameter Values 

Dimension z of the noise vector 100 

The quantity of the layers 4 layers 

 Function being activated  LeakyReLU; output layer: hyperbolic tangent 
The quantity of each layer’s neurons (128, 256, 512, 32) 

 

                                  
Table 3. The discriminator of WGAN-GP hyperparameters. 

 

Parameter Values 

The quantity of layers 4 layers 

Functions of activation LeakyReLU; output layer: linear 
The quantity of neurons in every layer (512, 256, 128, 1) 

                               
Table 4. The WGAN-GP model's hyperparameters that were set for our studies. 

 

Parameter Values 

Enhancer RMSprop (lr = 0.00001) 
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 Quantity in batch 128 

Number of epochs 50,000 

Loss function Wasserstein loss 

parameter for GP regularization 10 

 

V. RESULTS 

 

We used precision and loss measures within the aerial video library on YouTube to assess our method. To assess the 
potency of classification for every action category, we also examined the confusion matrix. Our three experiments were 
as follows: 
1. Baseline: CNN-LSTM model (accuracy: 71.21%) 
2. Traditional data enhancement + CNN-LSTM model (accuracy: 94.58%) 
3. Proposed model: WGAN-based feature augmentation combined with fundamental video editing + CNN-LSTM 
model (accuracy: 97.83%) 
Our suggested framework outperformed state-of-the-art methods, including MFN-3D + GAN (68.2% accuracy) and 
FCN (86.63% accuracy). Table 5 summarizes the results. 
 

 

                                  
Figure 5. The WGAN-GP model's discriminator and generator faults. 

 

 

 

Figure 6: A bar graph illustrating the initial and artificial features. 
 

 

                                  
Figure 7: shows the accuracy at the two validation and training phases. 
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Figure 8: The error that occurred throughout the validation and training phases. 
 

 

         
Figure 9 A table that shows the quantity of correct and incorrect predictions for each. 

                                      
VI. CONCLUSION 

 

To ensure that overcome certain data problems, we created a Hybrid GAN-Based CNN-LSTM technique to identify 
operations in the air footage. Our principal contributions are: 
1. A new way to increase data. 
2. Using GANs to create features. 
3. Improved accuracy and efficiency. 
However, our approach has some drawbacks, such as: 
1. High memory usage. 
2. Long training times. 
3. Potential video quality issues. 
In the future, we plan to: 
1. Focus on segmenting space and time in videos. 
2. Make the model more resistant to attacks. 
3. Optimize processing speed, accuracy, network complexity, and computer resources. 
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