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ABSTRACT: Cardiovascular diseases (CVDs) are among the leading causes of death worldwide, with arrhythmias 
posing significant risks if not detected early. Modern healthcare emphasizes real-time, portable solutions for continuous 
monitoring, and VLSI-based ECG detection systems are key to achieving this goal. This paper provides an extensive 
comparative analysis of various VLSI approaches for arrhythmia detection, with a focus on the Data-Shifting Neural 
Network (DSNN) proposed in the base study. By utilizing a unique data-shifting mechanism and a convolutional neural 
network (CNN)-based architecture, DSNN achieves 97.17% accuracy with minimal power consumption (0.75 mW) 
and an ultra-compact design (0.619 mm²). In contrast, traditional methods such as Naive Bayes classifiers and Support 
Vector Machines (SVMs) offer simplicity and lower power consumption but compromise accuracy and scalability. 
Other CNN-based architectures provide higher accuracy but demand larger chip areas and power resources. This review 
emphasizes DSNN's strengths while identifying future challenges and research directions in wearable healthcare 
technologies. 
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I. INTRODUCTION 

 

The detection of cardiac arrhythmias is essential for diagnosing life-threatening conditions such as ventricular 
fibrillation, atrial fibrillation, and premature ventricular contractions. These abnormalities, if detected in their early 
stages, can significantly reduce the risks associated with sudden cardiac death and improve patient outcomes. 
Electrocardiograms (ECGs) remain the gold standard for monitoring the heart’s electrical activity, but their integration 
into portable and wearable devices requires innovations in hardware design. This is where Very Large-Scale Integration 
(VLSI) technology has emerged as a transformative tool for developing low-power, compact, and real-time monitoring 
systems. [1] 
 

Among recent advancements, the Data-Shifting Neural Network (DSNN), as proposed in the base study, is a 
groundbreaking architecture that combines a data augmentation strategy with deep learning for real-time arrhythmia 
detection. Its design is optimized for hardware implementation, making it highly efficient and well-suited for wearable 
devices. This architecture demonstrates the potential to bridge the gap between accuracy, power efficiency, and 
compactness—key parameters for next-generation healthcare devices. [1] 
 

Other referenced approaches, including Naive Bayes classifiers, Support Vector Machines (SVMs), and alternative 
CNN-based architectures, also contribute significantly to the evolution of ECG-based arrhythmia detection. While these 
methods demonstrate specific strengths, they often fall short in achieving the balance of accuracy and efficiency 
required for portable applications. This paper systematically evaluates these methodologies, providing insights into 
their performance, design trade-offs, and practical implications for real-world healthcare scenarios. 
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II. METHODOLOGY 

 

2.1 DATA-SHIFTING NEURAL NETWORK (DSNN) APPROACH 

The Data-Shifting Neural Network (DSNN) is an innovative method developed to enhance the accuracy and reliability 
of detecting heart-related conditions, such as arrhythmias, from ECG signals. It employs a unique data-shifting 
technique, which generates an additional version of the input ECG signal by slightly altering its data points. This 
approach effectively doubles the dataset available for training and testing the network. By increasing the diversity of 
the data, the network benefits in two significant ways. First, it enables the network to learn a broader range of features, 
improving its ability to generalize and perform accurately on unseen data. Second, processing both the original and 
shifted versions of the signal makes the network more robust to noise and real-world variations in ECG recordings, 
ensuring reliable performance even in less-than-ideal conditions. 
 

The architecture of DSNN is composed of several specialized layers designed to process ECG signals effectively and 
includes a voting system to enhance decision-making. At its core are convolutional layers, which are tasked with 
identifying critical patterns within the ECG data. These three layers progressively extract features, with the initial 
layers focusing on smaller patterns like peaks and dips, while the later layers detect larger trends such as repetitive 
abnormalities. The convolutional filters are carefully optimized to strike a balance between pattern detection and 
computational efficiency. Following these are max-pooling layers, which simplify the data by retaining only the most 
important features. These layers reduce the size of the data after each convolutional operation, which lowers 
computational requirements without compromising the quality of the extracted information. 
 

Once the features are extracted, they are passed to fully connected (FC) layers, where the network maps the features to 
specific classification labels. These layers take the flattened outputs of the earlier layers and learn to associate them 
with various heart conditions. Techniques like dropout are applied within the FC layers to minimize overfitting, 
ensuring that the network performs well on both training and unseen datasets. 
 

The DSNN is not only innovative in its software design but also highly optimized for hardware implementation, 
making it suitable for energy-efficient devices such as wearables. A key feature of its hardware design is the use of 
shared resources, where a single Multiply-Accumulate (MAC) unit is utilized across all layers. 



© 2024 IJIRCCE | Volume 12, Issue 11, November 2024|                                       DOI: 10.15680/IJIRCCE.2024.1211117 

 

IJIRCCE©2024                                                   | An ISO 9001:2008 Certified Journal |                                                           12748 

 

 Figure1. Flowchart for Data Shifting (DSNN) approach 
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REFERENCED APPROACHES 

2.2 Naive Bayes Classifier ([2]) 
The Naive Bayes classifier is a simple yet effective method widely used for detecting arrhythmias in ECG signals. It 
operates on a probabilistic framework, calculating the likelihood of each possible class, such as normal or arrhythmic 
heartbeats, based on pre-defined features extracted from the ECG signal. These features typically include critical 
aspects such as the amplitude of specific signal peaks, the timing between beats, or the frequency of certain repetitive 
patterns. By using these handcrafted features, the Naive Bayes classifier can quickly estimate the probability of a signal 
belonging to a particular class and make classification decisions accordingly. 
 

One of the major advantages of the Naive Bayes classifier is its lightweight and efficient design. The algorithm requires 
minimal computational power, making it ideal for resource-constrained systems. Additionally, its simple 
implementation allows it to function efficiently on basic hardware platforms, ensuring it can be deployed in low-cost 
systems. This efficiency is particularly beneficial in environments with limited access to computational resources, such 
as remote monitoring devices or low-cost medical equipment. 
 

However, the method is highly feature-dependent, meaning it relies heavily on the quality and relevance of the features 
selected by experts. The success of the classifier is determined by how well the chosen features represent the 
underlying characteristics of the ECG data. This dependence on handcrafted features requires significant domain 
expertise and limits the adaptability of the method, as it struggles to generalize across varying datasets or evolving 
signal patterns. 
 

Despite its simplicity, the Naive Bayes classifier has notable limitations, particularly in its accuracy. With a modest 
accuracy of 86%, it often fails to detect more complex or subtle arrhythmias, especially those involving intricate ECG 
signal variations. This restricted performance makes it less suitable for applications where high precision and reliability 
are critical. Nonetheless, its low cost, simplicity, and efficiency make it a reasonable choice for applications where 
computational power is very limited, and high accuracy is not the primary requirement. It serves as a pragmatic 
solution for entry-level ECG analysis systems or as a baseline for comparison against more advanced techniques. 
 

2.3 Support Vector Machines ([3]) 
Support Vector Machines (SVMs) are a popular and robust choice for analysing ECG signals, owing to their ability to 
handle large datasets with high-dimensional features. The primary working principle of SVMs is to create a boundary, 
known as a hyperplane, that effectively separates normal heartbeats from arrhythmic ones. This boundary is designed to 
maximize the margin between different classes in the data, ensuring accurate classification even in cases with 
overlapping or closely related features. 
 

One of the significant strengths of SVMs is their ability to handle complex data. ECG signals, which often contain 
numerous features and intricate patterns, are well-suited for analysis by SVMs due to their ability to work efficiently in 
high-dimensional spaces. This flexibility allows SVMs to classify a wide range of arrhythmias by utilizing detailed, 
feature-rich datasets. 
 

However, SVMs are not without their challenges. Their performance heavily relies on the selection of the appropriate 
kernel function, which determines how the data is transformed into a higher-dimensional space. Choosing the wrong 
kernel can significantly reduce the model's effectiveness, making kernel selection a critical and often complex task. 
Additionally, SVMs are static models, meaning they cannot adapt dynamically to new patterns or changes in the 
dataset. This lack of adaptability limits their utility in real-time applications, where the nature of the input data can 
evolve over time. 
 

In terms of accuracy, SVMs provide moderate performance, achieving classification rates of around 90%. While this is 
an improvement over Naive Bayes classifiers, SVMs are still outperformed by modern deep learning approaches such 
as Convolutional Neural Networks (CNNs). Unlike SVMs, CNNs can automatically learn features from raw ECG data, 
eliminating the need for manual feature engineering and significantly improving performance. 
 

Despite these limitations, SVMs remain a reliable and efficient choice for ECG analysis, particularly in scenarios where 
computational resources are constrained, and dynamic adaptability is not a primary concern. Their structured approach 
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to handling high-dimensional data ensures robust performance in a range of classification tasks, but their moderate 
accuracy and lack of adaptability make them less appealing for cutting-edge, high-performance ECG analysis systems. 
SVMs are best suited as intermediate solutions or as components of hybrid systems that combine multiple techniques 
for improved results. 
 

2.4 Convolutional Neural Networks ([3] & [4]) 
Convolutional Neural Networks (CNNs) have brought about significant advancements in ECG signal classification by 
enabling models to learn directly from raw data. Unlike traditional methods that rely heavily on predefined features 
selected by domain experts, CNNs have the ability to automatically extract and discover patterns within the ECG 
signals. This autonomous feature-learning capability allows CNNs to identify intricate details in the data, making them 
highly effective at detecting arrhythmias, including subtle or complex abnormalities that might elude feature-based 
methods. 
 

One of the key advantages of CNNs is their remarkable high accuracy, which can reach up to 96.7%. This level of 
precision makes CNNs among the most reliable models for ECG classification tasks. Their ability to generalize across 
different types of arrhythmias and datasets further enhances their utility in real-world applications. CNNs achieve this 
by leveraging multiple layers in their architecture to capture a hierarchy of features. The initial layers focus on simple 
and localized patterns, such as signal peaks and troughs, while deeper layers analyse broader and more abstract trends, 
including recurring irregularities or prolonged deviations in the ECG waveform. This hierarchical feature extraction 
enables CNNs to adapt to a wide range of ECG patterns, making them suitable for analysing both simple and complex 
arrhythmias. 
 

However, while CNNs excel in accuracy and adaptability, they face several challenges when implemented in hardware, 
particularly for wearable and portable devices. One of the most pressing issues is their high-power consumption. CNNs 
require substantial computational resources to process data, which translates into significant energy usage. Hardware 
implementations of CNNs often consume more than 2 mW of power, far exceeding the requirements for energy-

efficient wearable devices. This limitation is critical, as wearable devices typically depend on battery-powered 
operation, where minimizing power consumption is essential to ensure long battery life and consistent performance. 
Another major challenge is the large chip size required to implement CNNs in hardware. Due to the complexity of their 
architecture, which includes multiple convolutional, pooling, and fully connected layers, CNN-based systems typically 
occupy substantial physical space. The chip area for such systems often exceeds 1.5 mm², which can be problematic for 
compact wearable devices. The large size not only limits integration into small-scale devices but also increases 
fabrication costs, making CNN-based designs less practical for cost-sensitive or space-constrained applications. 
 

Despite these challenges, CNNs remain a powerful tool for ECG analysis, particularly in applications where power and 
space constraints are not critical. They are well-suited for larger systems, such as cloud-based diagnostic platforms or 
high-performance medical equipment used in clinical environments. In these contexts, CNNs provide unparalleled 
accuracy and adaptability, ensuring reliable detection of arrhythmias across diverse patient datasets. For wearable 
healthcare devices, further hardware optimizations are required to address the power and size limitations of CNN 
implementations. Strategies such as resource sharing, efficient memory management, and the use of low-power 
fabrication technologies hold promise in making CNNs more viable for portable and energy-constrained systems. 
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Figure 2: An image showing the referenced approaches 

 

III. RESULTS AND DISCUSSION 

 

3.1 Performance Analysis 

The DSNN outperforms all referenced approaches in terms of accuracy, achieving 97.17% compared to 86% for Naive 
Bayes and 90% for SVMs. Its data-shifting mechanism enhances its ability to detect subtle arrhythmia patterns, 
ensuring robustness against noise and signal variability. CNN-based systems, while competitive in accuracy, fail to 
match DSNN’s energy efficiency and compactness. (Base Paper: [1], References: [2,3,4]) 
 

Table1: Results and Discussions of DSNN Compared to Other Approaches 

Metric DSNN 
Naive 
Bayes 

SVM 
CNN-Based 

Systems 
Discussion 

Accuracy 97.17% 86% 90% 96.7% 

DSNN achieves the highest accuracy, benefiting from 
the data-shifting mechanism for robust feature 

extraction and noise handling. 

Power 
Dissipation 

0.75 mW ~0.1 mW ~0.2 mW >2 mW 

DSNN provides significantly lower power dissipation 
than CNNs, making it ideal for wearable applications 

while maintaining high accuracy. 
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Metric DSNN 
Naive 
Bayes 

SVM 
CNN-Based 

Systems 
Discussion 

Chip Area 
0.619 
mm² ~0.5 mm² ~0.6 mm² >1.5 mm² 

DSNN’s compact design demonstrates efficient 
resource utilization, balancing performance with 

minimal area requirements. 

Robustness to 
Noise 

High Low Medium Medium 

The data-shifting mechanism gives DSNN a clear 
advantage in handling noisy and variable ECG 

signals. 

Hardware 
Complexity 

Moderate Low Low High 

DSNN optimizes hardware complexity through 
resource-sharing techniques, maintaining energy 
efficiency while outperforming simpler models. 

Adaptability High Low Low High 

While CNNs also adapt well to complex data, DSNN 
combines this adaptability with superior efficiency and 

compactness. 

Suitability for 
Wearables 

Ideal Moderate Moderate Limited 

DSNN strikes a balance between accuracy, efficiency, 
and size, making it highly suitable for wearable 

healthcare devices. 
 

3.2 Hardware Efficiency 

The DSNN’s compact chip design (0.619 mm²) and low power dissipation (0.75 mW) make it ideal for wearable 
applications. In contrast, traditional CNNs occupy larger areas and consume more power due to their deeper 
architectures and lack of resource-sharing optimizations. Naive Bayes and SVMs, while more efficient in terms of 
hardware, compromise on accuracy and adaptability, limiting their applicability in high-performance scenarios. ([1], 
References: [2], [3]) 
 

3.3 Implications for Wearable Devices 

Wearable devices require ultra-low-power operation, compact designs, and high accuracy to ensure prolonged battery 
life and reliable performance. The DSNN meets these criteria, offering an optimal balance of performance and 
efficiency. Its design demonstrates the feasibility of integrating advanced deep learning models into resource-

constrained environments, paving the way for next-generation healthcare technologies. (Base Paper: [1], Reference: 
[2]) 
 

IV. CONCLUSION 

 

The integration of VLSI technology with advanced machine learning models has transformed the field of ECG-based 
arrhythmia detection. Among the methodologies analysed, the DSNN stands out as a superior architecture, achieving a 
unique balance of accuracy, energy efficiency, and compactness. Its innovative data-shifting mechanism, combined 
with a robust CNN architecture and optimized hardware design, sets a new benchmark for real-time ECG monitoring 
systems. 
 

Compared to traditional approaches, such as Naive Bayes and SVMs, the DSNN demonstrates a significant 
improvement in accuracy, adaptability, and scalability. While Naive Bayes offers simplicity and low hardware costs, its 
limited accuracy and reliance on handcrafted features restrict its application in modern healthcare. Similarly, SVMs, 
despite their computational efficiency, are outperformed by CNN-based methods in handling complex and evolving 
datasets. 
 

The referenced CNN-based systems showcase the potential of deep learning in ECG classification but fall short in 
energy efficiency and hardware compactness, critical factors for wearable devices. The DSNN addresses these 
challenges by leveraging resource-sharing techniques and a voter mechanism, achieving superior performance without 
compromising efficiency. 
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Future research should focus on enhancing the DSNN’s noise resilience and expanding its adaptability to diverse 
patient populations. Exploring hybrid architectures that combine the strengths of multiple methodologies could further 
advance the state-of-the-art in real-time cardiac monitoring. Additionally, integrating multi-lead ECG data and 
developing solutions for real-world deployment, such as motion artifact handling and long-term signal stability, are 
essential steps toward making these systems more practical and reliable. 
 

This comparative analysis underscores the transformative potential of DSNN and similar architectures in 
revolutionizing cardiac healthcare. As technology advances, the continued convergence of VLSI design and machine 
learning will undoubtedly drive innovations that save lives and improve the quality of care. 
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