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ABSTRACT: The exponential growth of unstructured textual data has created a pressing need for intelligent systems 

capable of efficiently extracting relevant information in response to user queries. This paper presents a Retrieval-

Augmented Generation (RAG) based Question Answering (Q&A) system, designed to interactively answer user 

queries based on the contents of uploaded documents. The system integrates a semantic retriever with a generative 

language model to provide context-aware, accurate responses. Developed using Stream lit for the user interface and 

powered by Hugging Face’s transformer models, the system supports document formats including PDF, DOCX, PPTX, 

and TXT. Uploaded documents are parsed and segmented into chunks, embedded using Sentence Transformers, and 

indexed using FAISS for high-performance vector similarity search. Upon receiving a query, the system retrieves the 

most semantically relevant chunks and uses the Mistral-7B-Instruct language model to generate an informed response 

based on the retrieved context. 

 

KEYWORDS: The rag-based Q&A system leverages advanced natural language processing (NLP) techniques and 

generative AI to create an interactive, document-driven question answering platform. The scope of the project is broad 

and multidisciplinary, covering document parsing, semantic retrieval, and natural language generation—all integrated 

into an access multi-format document support. 

 

I. INTRODUCTION 

In the digital age, organizations and individuals are inundated with vast amounts of unstructured textual data spanning 

multiple formats such as PDF reports, presentations, text files, and word documents. Extracting relevant information 

from these documents manually is time-consuming, inefficient, and prone to human error. As a result, there is a growing 

demand for intelligent systems that can process such documents and  provide meaningful, context-aware answers to user 

queries. However, traditional QA approaches often struggle with factual consistency and context retention, particularly 

when dealing with external document sources. To overcome these limitations, the concept of Retrieval-Augmented 

Generation (RAG) has emerged as a powerful hybrid framework that combines the strengths of information retrieval 

and generative language models. 

 

II. RELATED WORK 

 

Text Segmentation and Embedding: Text extracted from documents is split into coherent chunks and embedded using 

Sentence Transformers for semantic understanding. 

Semantic Search with FAISS: Efficient and saleable vector search using FAISS allows the system to retrieve the 

most relevant document segments for a given query. 

 

Generative Response via LLM: The system utilizes Mistral-7B-Instruct, a state-of-the-art large language model from 

Hugging-face, to generate context-aware and grammatically accurate answers. 

Interactive User Interface: Built with Stream-lit, the application offers a seamless interface for document upload, 

preview, question input, and real-time answers. 

Session and Chat History Management: User interactions are stored in session memory to maintain context and allow 

users to view past questions and answers. 
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III. PROPOSED ALGORITHM 

 

A. Design Considerations: 

The proposed system is an intelligent, interactive Question Answering (QA) application that uses Retrieval-Augmented 

Generation (RAG) to provide accurate, natural language answers based on content from user-uploaded documents. It 

combines semantic search and language generation to bridge the gap between raw document data and human-level 

understanding. 

By integrating dense retrieval (FAISS) with a large language model (LLM) such as Mistral-7B, the system ensures that 

answers are both relevant to the user's query and grounded in the source content. 

1. Document Upload Module 

• Supports multiple file types: PDF, DOCX, PPTX, and TXT. 
• Extracts raw text content using libraries such as PyPDF2, python-docx, and python-pptx. 

2. Text Chunking & Preprocessing 

• Splits large text into overlapping chunks using LangChain’s Character Text Splitter. 

• This ensures better semantic coverage and maintains context for retrieval. 
3. Embedding Generation 

• Converts each text chunk into dense vector embedding using a pre-trained Sentence Transformer model (e.g., 

all-mpnet-base-v2). 

• Captures semantic meaning of the text for more accurate retrieval. 
4. Vector Store Creation with FAISS 

• Stores embedding in a FAISS (Facebook AI Similarity Search) index. 
• Allows for fast and scalable semantic search based on user queries. 

5. Query Handling & Retrieval 

• User inputs a natural language question. 
• The system retrieves top-k semantically relevant text chunks from the FAISS vector store. 

6. Answer Generation using LLM 

• The retrieved context and the user query are passed to a generative language model (e.g., Mistral-7B-Instruct 

via Hugging Face API). 

• The model produces a fluent, contextually grounded response. 
7. User Interface 

• Developed using streamlit for ease of interaction. 

• Provides features like: 

• Document preview 

• Question input 

• Answer display 

• Chat history 

 

IV. PSEUDO CODE 

 

Step 1: Setup & Configuration 

Import necessary libraries (Streamlit, FAISS, LangChain, PyPDF2, python-pptx, etc.) 

Load HuggingFace API key from secrets and set environment variable 

 

Step 2: Helper Functions  

  truncate_documents(docs,max_chars) 

                     → Truncate a list of documents so that their combined text does not exceed a specified character limit. 
  extract_text_from_file(input_type,input_data)              

    → Extract plain text from uploaded file based on its type (PDF, DOCX, PPT, TXT). 
  process_input(input_type,input_data) 

                      → Process the uploaded file: 
• Extract text 

• Split text into chunks 

• Convert chunks to Document objects 

• Create embedding 
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• Store in FAISS vector store 

• Return vector store 

 

answer_question(vectorstore,query) 

                → Use retriever and LLM to answer the user’s question: 

• Get relevant documents 

• Truncate if needed 

• Form prompt 

• Use LLM to generate an answer 

 

format_document_content(input_type,input_data) 

              → Format extracted content for display in HTML (e.g., wrap lines in <p> tags for PPT/DOCX) 

 

Step 3: Main Streamlit App Logic 

Initialize Page 

• Set page title and layout 

• Display app title 

Initialize Session State 

• Store chat history and latest answer if not already set 

Custom CSS Styling 

• Define styles for preview and buttons 

Column 1: Document Upload 

• User selects document type 

• Uploads the document file 

• If uploaded, extract and preview the content (formatted) 

Column 2: Ask Questions 

• Button to process uploaded document into vector store 

• Input box for user to ask a question 

• On submit, call LLM with retrieved context to get answer 

• Display answer 

• Store Q&A in chat history 

Chat History Section 

• Button to clear chat history 

• If history exists, show past Q&A pairs in styled boxes 

 

 

V. SYSTEM TESTING 

 

Testing is a critical phase in software development that ensures the system functions correctly, meets requirements, 

and handles unexpected inputs gracefully. For the RAG-based Q&A System, both functional and non-functional 

testing strategies were employed to validate the integrity and performance of the application. 

 

Testing Strategy 

• Unit Testing: Each module (document processing, embedding, retrieval, answer generation) was tested 

individually to verify its correctness 

• Integration Testing: Modules were integrated and tested end-to-end to ensure seamless data flow from 

document upload to answer generation. 

• User Acceptance Testing (UAT): The complete system was tested through the Streamlit interface to verify 

user experience and expected outcomes. 

• Boundary Testing: The system was tested with empty documents, extremely large documents, and edge-case 

queries to assess its robustness. 
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 Test Cases 

  

Test CaseID Test Scenario Expected Result Status 

TC01 Upload valid PDF document Text is extracted and displayed          Pass 

TC02 Upload empty or corrupt DOCX file Warning message is shown         Pass 

TC03 Upload large PPTX filAll slide text is extracted and chunked           Pass 

TC04 Ask a question before uploading a 

document 

Error or warning message is shown                Pass 

 

TC05 

Ask a relevant question after  

processing  a  document 

Answer is generated using document 

context 
         Pass 

 

TC06 

Ask an unrelated or vague  question System returns fall back or no relevant 

answer message 
      Pass 

 

TC07 

 

Submit empty question input 

 

Prompt to enter a valid  question 
      Pass 

 

TC08 

 

Test chat history feature 

Previous Q&A pairs are correctly 

displayed 
      Pass 

 

TC09 

 

Clear chat history 

Chat history is removed and 

feedback is shown 
      Pass 

 

TC10 

Test embedding creation

 and FAISS retrieval 

Top-k chunks are retrieved for given 

query 
      Pass 

 

Tools and Libraries Used for Testing 

 

• Pytest: For unit testing Python functions such as document parsing and embedding logic. 

• Streamlit Session State: Tested for handling user interactions and preserving chat history. 

• Manual Testing: Performed through the front end to simulate real-world document uploads and 

questions. 

• Performance Monitoring: Streamlit logs and response times were manually observed for delays or 

bottlenecks. 

 

VI. RESULT 

 

Fig.1 Front Page 
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Fig.2 Multiple Document uploads 

 

 
 

Fig.3 Questioning and Getting Answer 

 

Fig.4 Chat and Clear History 
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VII. CONCLUSION AND FUTURE WORK 

 

While the current implementation of the RAG-based Q&A system delivers effective document-grounded question 

answering, there remain several promising directions for future enhancement and research. 

 
A. Persistent and Saleable Vector Store 

Currently, FAISS is used for in-memory vector storage, which limits scalability and persistence. In future iterations, 

integrating a persistent vector database such as Pinecone, Weaviate, or ChromaDB would: 

1. Enable long-term storage of document embedding 

2. Support multi-user access across sessions 

3. Allow for indexing large-scale document corpora 

 
B. GPU Acceleration and Performance Optimization 

The system is currently CPU-bound, which impacts performance for large documents or concurrent users. Future work 

can: 

1. Incorporate GPU support for embedding and LLM inference 

2. Optimize FAISS indexing and retrieval times 

3. Improve overall system responsiveness for real-time querying 

4. Integration with External Data Sources 

 

The implementation of the Retrieval-Augmented Generation (RAG)-based Question Answering System using Streamlit 

and Hugging Face demonstrates the powerful integration of modern NLP techniques with interactive user interfaces. 

By combining document retrieval through FAISS vector indexing and natural language generation using Mistral-7B-

Instruct, the system is capable of delivering accurate, contextually grounded answers based on uploaded documents. 

The system supports multiple document formats including PDF, DOCX, PPTX, and plain text, and enables semantic 

search and question answering with minimal latency. 
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