

International Journal of Innovative Research in

Computer and Communication Engineering
(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

 Impact Factor: 8.771 Volume 13, Issue 4, April 2025

© 2025 IJIRCCE | Volume 13, Issue 4, April 2025| DOI: 10.15680/IJIRCCE.2025.1304304

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9161

RAG Based Question and Answering Q&A System

Divya M, Kalmesh B Ambi, Sagar K.A, Manasa P.M

UG Student, Dept. of CSE, BIET, DVG, Karnataka, India

Prof. Rahima B

Assistant Professor, Dept. of CSE, BIET, DVG, Karnataka, India

ABSTRACT: The exponential growth of unstructured textual data has created a pressing need for intelligent systems

capable of efficiently extracting relevant information in response to user queries. This paper presents a Retrieval-

Augmented Generation (RAG) based Question Answering (Q&A) system, designed to interactively answer user

queries based on the contents of uploaded documents. The system integrates a semantic retriever with a generative

language model to provide context-aware, accurate responses. Developed using Stream lit for the user interface and

powered by Hugging Face’s transformer models, the system supports document formats including PDF, DOCX, PPTX,

and TXT. Uploaded documents are parsed and segmented into chunks, embedded using Sentence Transformers, and

indexed using FAISS for high-performance vector similarity search. Upon receiving a query, the system retrieves the

most semantically relevant chunks and uses the Mistral-7B-Instruct language model to generate an informed response

based on the retrieved context.

KEYWORDS: The rag-based Q&A system leverages advanced natural language processing (NLP) techniques and

generative AI to create an interactive, document-driven question answering platform. The scope of the project is broad

and multidisciplinary, covering document parsing, semantic retrieval, and natural language generation—all integrated

into an access multi-format document support.

I. INTRODUCTION

In the digital age, organizations and individuals are inundated with vast amounts of unstructured textual data spanning

multiple formats such as PDF reports, presentations, text files, and word documents. Extracting relevant information

from these documents manually is time-consuming, inefficient, and prone to human error. As a result, there is a growing

demand for intelligent systems that can process such documents and provide meaningful, context-aware answers to user

queries. However, traditional QA approaches often struggle with factual consistency and context retention, particularly

when dealing with external document sources. To overcome these limitations, the concept of Retrieval-Augmented

Generation (RAG) has emerged as a powerful hybrid framework that combines the strengths of information retrieval

and generative language models.

II. RELATED WORK

Text Segmentation and Embedding: Text extracted from documents is split into coherent chunks and embedded using

Sentence Transformers for semantic understanding.

Semantic Search with FAISS: Efficient and saleable vector search using FAISS allows the system to retrieve the

most relevant document segments for a given query.

Generative Response via LLM: The system utilizes Mistral-7B-Instruct, a state-of-the-art large language model from

Hugging-face, to generate context-aware and grammatically accurate answers.

Interactive User Interface: Built with Stream-lit, the application offers a seamless interface for document upload,

preview, question input, and real-time answers.

Session and Chat History Management: User interactions are stored in session memory to maintain context and allow

users to view past questions and answers.

© 2025 IJIRCCE | Volume 13, Issue 4, April 2025| DOI: 10.15680/IJIRCCE.2025.1304304

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9162

III. PROPOSED ALGORITHM

A. Design Considerations:

The proposed system is an intelligent, interactive Question Answering (QA) application that uses Retrieval-Augmented

Generation (RAG) to provide accurate, natural language answers based on content from user-uploaded documents. It

combines semantic search and language generation to bridge the gap between raw document data and human-level

understanding.

By integrating dense retrieval (FAISS) with a large language model (LLM) such as Mistral-7B, the system ensures that

answers are both relevant to the user's query and grounded in the source content.

1. Document Upload Module

• Supports multiple file types: PDF, DOCX, PPTX, and TXT.
• Extracts raw text content using libraries such as PyPDF2, python-docx, and python-pptx.

2. Text Chunking & Preprocessing

• Splits large text into overlapping chunks using LangChain’s Character Text Splitter.

• This ensures better semantic coverage and maintains context for retrieval.
3. Embedding Generation

• Converts each text chunk into dense vector embedding using a pre-trained Sentence Transformer model (e.g.,

all-mpnet-base-v2).

• Captures semantic meaning of the text for more accurate retrieval.
4. Vector Store Creation with FAISS

• Stores embedding in a FAISS (Facebook AI Similarity Search) index.
• Allows for fast and scalable semantic search based on user queries.

5. Query Handling & Retrieval

• User inputs a natural language question.
• The system retrieves top-k semantically relevant text chunks from the FAISS vector store.

6. Answer Generation using LLM

• The retrieved context and the user query are passed to a generative language model (e.g., Mistral-7B-Instruct

via Hugging Face API).

• The model produces a fluent, contextually grounded response.
7. User Interface

• Developed using streamlit for ease of interaction.

• Provides features like:

• Document preview

• Question input

• Answer display

• Chat history

IV. PSEUDO CODE

Step 1: Setup & Configuration

Import necessary libraries (Streamlit, FAISS, LangChain, PyPDF2, python-pptx, etc.)

Load HuggingFace API key from secrets and set environment variable

Step 2: Helper Functions

 truncate_documents(docs,max_chars)

 → Truncate a list of documents so that their combined text does not exceed a specified character limit.
 extract_text_from_file(input_type,input_data)

 → Extract plain text from uploaded file based on its type (PDF, DOCX, PPT, TXT).
 process_input(input_type,input_data)

 → Process the uploaded file:
• Extract text

• Split text into chunks

• Convert chunks to Document objects

• Create embedding

© 2025 IJIRCCE | Volume 13, Issue 4, April 2025| DOI: 10.15680/IJIRCCE.2025.1304304

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9163

• Store in FAISS vector store

• Return vector store

answer_question(vectorstore,query)

 → Use retriever and LLM to answer the user’s question:

• Get relevant documents

• Truncate if needed

• Form prompt

• Use LLM to generate an answer

format_document_content(input_type,input_data)

 → Format extracted content for display in HTML (e.g., wrap lines in <p> tags for PPT/DOCX)

Step 3: Main Streamlit App Logic

Initialize Page

• Set page title and layout

• Display app title

Initialize Session State

• Store chat history and latest answer if not already set

Custom CSS Styling

• Define styles for preview and buttons

Column 1: Document Upload

• User selects document type

• Uploads the document file

• If uploaded, extract and preview the content (formatted)

Column 2: Ask Questions

• Button to process uploaded document into vector store

• Input box for user to ask a question

• On submit, call LLM with retrieved context to get answer

• Display answer

• Store Q&A in chat history

Chat History Section

• Button to clear chat history

• If history exists, show past Q&A pairs in styled boxes

V. SYSTEM TESTING

Testing is a critical phase in software development that ensures the system functions correctly, meets requirements,

and handles unexpected inputs gracefully. For the RAG-based Q&A System, both functional and non-functional

testing strategies were employed to validate the integrity and performance of the application.

Testing Strategy

• Unit Testing: Each module (document processing, embedding, retrieval, answer generation) was tested

individually to verify its correctness

• Integration Testing: Modules were integrated and tested end-to-end to ensure seamless data flow from

document upload to answer generation.

• User Acceptance Testing (UAT): The complete system was tested through the Streamlit interface to verify

user experience and expected outcomes.

• Boundary Testing: The system was tested with empty documents, extremely large documents, and edge-case

queries to assess its robustness.

© 2025 IJIRCCE | Volume 13, Issue 4, April 2025| DOI: 10.15680/IJIRCCE.2025.1304304

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9164

 Test Cases

Test CaseID Test Scenario Expected Result Status

TC01 Upload valid PDF document Text is extracted and displayed Pass

TC02 Upload empty or corrupt DOCX file Warning message is shown Pass

TC03 Upload large PPTX filAll slide text is extracted and chunked Pass

TC04 Ask a question before uploading a

document

Error or warning message is shown Pass

TC05

Ask a relevant question after

processing a document

Answer is generated using document

context
 Pass

TC06

Ask an unrelated or vague question System returns fall back or no relevant

answer message
 Pass

TC07

Submit empty question input

Prompt to enter a valid question
 Pass

TC08

Test chat history feature

Previous Q&A pairs are correctly

displayed
 Pass

TC09

Clear chat history

Chat history is removed and

feedback is shown
 Pass

TC10

Test embedding creation

 and FAISS retrieval

Top-k chunks are retrieved for given

query
 Pass

Tools and Libraries Used for Testing

• Pytest: For unit testing Python functions such as document parsing and embedding logic.

• Streamlit Session State: Tested for handling user interactions and preserving chat history.

• Manual Testing: Performed through the front end to simulate real-world document uploads and

questions.

• Performance Monitoring: Streamlit logs and response times were manually observed for delays or

bottlenecks.

VI. RESULT

Fig.1 Front Page

© 2025 IJIRCCE | Volume 13, Issue 4, April 2025| DOI: 10.15680/IJIRCCE.2025.1304304

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9165

Fig.2 Multiple Document uploads

Fig.3 Questioning and Getting Answer

Fig.4 Chat and Clear History

© 2025 IJIRCCE | Volume 13, Issue 4, April 2025| DOI: 10.15680/IJIRCCE.2025.1304304

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9166

VII. CONCLUSION AND FUTURE WORK

While the current implementation of the RAG-based Q&A system delivers effective document-grounded question

answering, there remain several promising directions for future enhancement and research.

A. Persistent and Saleable Vector Store

Currently, FAISS is used for in-memory vector storage, which limits scalability and persistence. In future iterations,

integrating a persistent vector database such as Pinecone, Weaviate, or ChromaDB would:

1. Enable long-term storage of document embedding

2. Support multi-user access across sessions

3. Allow for indexing large-scale document corpora

B. GPU Acceleration and Performance Optimization

The system is currently CPU-bound, which impacts performance for large documents or concurrent users. Future work

can:

1. Incorporate GPU support for embedding and LLM inference

2. Optimize FAISS indexing and retrieval times

3. Improve overall system responsiveness for real-time querying

4. Integration with External Data Sources

The implementation of the Retrieval-Augmented Generation (RAG)-based Question Answering System using Streamlit

and Hugging Face demonstrates the powerful integration of modern NLP techniques with interactive user interfaces.

By combining document retrieval through FAISS vector indexing and natural language generation using Mistral-7B-

Instruct, the system is capable of delivering accurate, contextually grounded answers based on uploaded documents.

The system supports multiple document formats including PDF, DOCX, PPTX, and plain text, and enables semantic

search and question answering with minimal latency.

REFERENCES

1. Lewis, P., Oguz, B., Rinott, R., Riedel, S., &Schwenk, H. (2020).Retrieval-Augmented Generation for Knowledge-

Intensive NLP Tasks.arXiv preprint arXiv:2005.11401.

2. Hugging Face. (2023). Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow

2.0. https://huggingface.co

3. Mistral AI.(2023).Mistral-7B-Instruct:ADense Transformer Model for Instruction Following.

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1

4. Reimers, N., &Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. arXiv

preprint arXiv:1908.10084.

5. FAISS – Facebook AI Similarity Search.(2021). Efficient similarity search and clustering of dense

vectors.https://github.com/facebookresearch/faiss

6. LangChain.(2023). Framework for developing applications powered by language models.

https://www.langchain.com

7. Thulasiram Prasad, P. (2024). A Study on how AI-Driven Chatbots Influence Customer Loyalty and Satisfaction in

Service Industries. International Journal of Innovative Research in Computer and Communication Engineering,

12(9), 11281-11288.

8. Streamlit Inc. (2023). Streamlit – The fastest way to build and share data apps. https://streamlit.io

9. Python Software Foundation. (2023). The Python Programming Language. https://www.python.org

10. PyPDF2. (2023). PDF file manipulation library for Python. https://pypi.org/project/PyPDF2/

11. python-docx. (2023). Create and update Microsoft Word .docx files. https://python-docx.readthedocs.io/

12. python-pptx. (2023). Python library for creating and updating PowerPoint (.pptx) files. https://python-

pptx.readthedocs.io/

13. OpenAI.(2023). GPT-3.5 Technical Report.OpenI. https://openai.com

https://www.langchain.com/

 8.379

	While the current implementation of the RAG-based Q&A system delivers effective document-grounded question answering, there remain several promising directions for future enhancement and research.
	A. Persistent and Saleable Vector Store
	Currently, FAISS is used for in-memory vector storage, which limits scalability and persistence. In future iterations, integrating a persistent vector database such as Pinecone, Weaviate, or ChromaDB would:
	1. Enable long-term storage of document embedding
	2. Support multi-user access across sessions
	3. Allow for indexing large-scale document corpora
	B. GPU Acceleration and Performance Optimization
	The system is currently CPU-bound, which impacts performance for large documents or concurrent users. Future work can:
	1. Incorporate GPU support for embedding and LLM inference
	2. Optimize FAISS indexing and retrieval times
	3. Improve overall system responsiveness for real-time querying
	4. Integration with External Data Sources
	The implementation of the Retrieval-Augmented Generation (RAG)-based Question Answering System using Streamlit and Hugging Face demonstrates the powerful integration of modern NLP techniques with interactive user interfaces. By combining document retr...
	1. Lewis, P., Oguz, B., Rinott, R., Riedel, S., &Schwenk, H. (2020).Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.arXiv preprint arXiv:2005.11401.
	2. Hugging Face. (2023). Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0. https://huggingface.co
	3. Mistral AI.(2023).Mistral-7B-Instruct:ADense Transformer Model for Instruction Following. https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
	4. Reimers, N., &Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. arXiv preprint arXiv:1908.10084.
	5. FAISS – Facebook AI Similarity Search.(2021). Efficient similarity search and clustering of dense vectors.https://github.com/facebookresearch/faiss
	6. LangChain.(2023). Framework for developing applications powered by language models. https://www.langchain.com
	8. Streamlit Inc. (2023). Streamlit – The fastest way to build and share data apps. https://streamlit.io
	9. Python Software Foundation. (2023). The Python Programming Language. https://www.python.org
	10. PyPDF2. (2023). PDF file manipulation library for Python. https://pypi.org/project/PyPDF2/
	11. python-docx. (2023). Create and update Microsoft Word .docx files. https://python-docx.readthedocs.io/
	12. python-pptx. (2023). Python library for creating and updating PowerPoint (.pptx) files. https://python-pptx.readthedocs.io/
	13. OpenAI.(2023). GPT-3.5 Technical Report.OpenI. https://openai.com

