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ABSTRACT: Coronary artery disease (CAD) is a disease in which any deterioration of coronary arteries occurs 

because of plaque buildup, but the arteries remain narrowed or blocked, which results in inadequate blood flow to the 

heart. The most common symptom is angina, the chest pain or discomfort that feels worst when you’re active, but can 

also occur when you’re sitting down, with pain that may spread to the arms or shoulders. CAD can also lead to very 

serious complications, including arrhythmias and heart failure. Early detection is complicated by an asymptomatic 

phase in many patients. About 31 percent of non-communicable diseases are caused by CAD. To address this, this 

study created a deep learning-based system using a Radial Basis Function Neural Network (RBNN) to detect severe 

CAD from electrocardiograms (ECGs). A high sensitivity and specificity was achieved with the system, with an AUC-

ROC of 0.911. This technology could help improve patient care by identifying patients who need invasive procedures, 

optimize resources, and improve outcomes for at risk patients. 
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I. INTRODUCTION 

 

Obstructive coronary artery disease (CAD) is the most common form of cardiovascular disease and is a major public 

health problem in the UK and worldwide. CAD is one of the top leading causes of mortality. A coronary disease occurs 

when atheromatous plaques (fatty deposits composed of cholesterol, cellular waste and other substances) accumulate 

within the coronary arteries. These plaques can augment until they restrict the passage of blood in a way that 

significantly restricts the lumen, or the inner opening, of an artery. This narrowing is important; if blood flow to the 

cardiac muscle is obstructed by the tightening of the coronary artery, the heart muscle may not receive enough oxygen. 

If this oxygen deprivation persists it can lead to ischemia, and show as angina (chest pain) or a heart attack. When a 

vulnerable plaque ruptures, a blood clot forms and blocks the artery causing heart muscle tissue to die from lack of 

oxygen due to a heart attack. The risk of a heart attack can be reduced by timely identification of atheromatous plaques 

and the degree of vascular stenosis. Clinicians have gained much greater ability to visualize the structure of the 

coronary arteries and assess the extent of stenosis non-invasively through advances in medical imaging technology. 

Stress echocardiography (SE), cardiac magnetic resonance imaging (MRI), and computed tomography coronary 

angiography (CTCA) are among the most effective of the currently available imaging modalities. And each of these 

techniques bring with them unique advantages in the evaluation of coronary artery health, allowing for earlier 

intervention that can have a dramatic effect on patient outcomes and potentially save people’s lives. Use of these 

advanced diagnostic tools helps healthcare providers to better manage CAD and prevent it's impacts on both individuals 

and the healthcare system as a whole [5]. 

 

An efficient screening methodology based on Radial Basis Function Neural Networks (RBFN) is developed through a 

deep learning approach. RBFN is a three-layer architecture machine learning algorithm that is rapid and effective, and 

can be used for regression as well as classification tasks. The simplest design is employing radial basis functions as 

activation functions and thereby the algorithm employs a supervised learning approach that simplifies design and 

enhances the function approximation capability. RBF networks are becoming increasingly popular in the scientific 

fields, because of their faster training than traditional back propagation networks, which makes them suitable for time 

sensitive applications. In areas of computer vision, speech recognition, and signal processing, as well as in healthcare 

for tasks such as diabetic retinopathy detection, cardiac arrest identification, left ventricular systolic dysfunction 

diagnosis, and atrial fibrillation prediction from electrocardiogram, they have shown effectiveness. This shows the 
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tremendous potential of RBF networks as a diagnostic aid that could greatly improve diagnostic accuracy and improve 

patient's outcomes in medicine. 

 

II. RELATED WORK 

 

In this research, Shokouhmand et al. (2021) propose a novel reference less framework for aortic stenosis identification 

using SCG and GCG morphological characteristics and HRV metrics, filter architecture optimization, subject and 

chunk level datasets creation. We employ robust machine learning techniques, such as XGBoost, which outperform 

previous methods and demonstrate superior predictive capability, resulting in a cheap and reliable solution for wearable 

cardiac monitoring [1]. 

 

Zreik et al. (2019) describe in this study a method for automatic and non-invasive identification of coronary arteries 

that need further invasive testing, based on the invasively measured fractional flow reserve (FFR). Because coronary 

blood flow can be blocked by multiple stenoses and plaques, it is necessary to assess the functional significance of 

stenosis by a comprehensive evaluation of the whole artery, not a localized analysis. The methodology encodes the 

complex three-dimensional multiplanar reformatted (MPR) volumes of coronary arteries using two convolutional 

autoencoders (CAEs) and a support vector machine (SVM) based on the presence of significant stenosis. The proposed 

approach showed the ability to identify arteries that require invasive evaluation by achieving an area under the receiver 

operating characteristic curve of 0.81 ± 0.02 at the artery level and 0.87 ± 0.02 at the patient level [2]. 

 

Machine learning (ML) has been used to advantage in the healthcare domain for decision making and predictive 

analytics based on large data resources. Recent advancements of Mohan et al. (2019) study in the IoT sectors has 

further illustrated the study by utilising ML methodologies, and culminated in a hybrid random forest linear model 

(HRFLM) with an accuracy of 88.7% in heart disease prediction. The heart rate time series and various clinical records 

are used in this model and a radial basis function network (RBFN) is used for classification with a training dataset of 

70% of the total data with an accuracy of about 0.8147 [3]. 

 

Coronary artery disease (CAD) is a common manifestation of cardiovascular disease (CVD) and a major global cause 

of death. The primary pathological mechanism causing CAD is atherosclerosis and accurate diagnosis of CAD by 

angiography depends on accurate lesion identification by the clinician, who uses visual evaluation for lesion 

identification. Freitas et al. (2022) propose the DeepCADD architecture to improve this process, using an angiography 

dataset to perform automatic lesion detection, instance segmentation, and performance optimization using a ResNet-50 

backbone. DeepCADD has high sensitivity (approx. 0.89) and reduced false negatives, and validation studies show that 

it may be an effective screening tool for detecting narrower lesions and automating angiographic assessments [4]. 

To evaluate the relevance of the dataset, a comprehensive dataset of relevant clinical information and 5 minute single 

lead ECG recordings from 107 healthy individuals and 93 patients with coronary artery disease (CAD) was first 

established and investigated by Yao et al. (2020). This dataset was then evaluated concurrently with five different 

scenarios, using different ML algorithms to distinguish the two cohorts using different features from RR and QT 

interval time series as well as ST-T segment waveforms. Attributes from the QT interval time series were notably better 

for classification performance than attributes from the RR interval time series. The results were further optimized by 

integrating additional features from ST-T segment waveforms with the features extracted from RR and QT interval 

time series, resulting in the best performance metrics of 96.16% accuracy, 95.75% sensitivity, and 96.40% specificity. 

An automated system for CAD detection was developed based on these optimal results, by building on these optimal 

results using extreme gradient boosting (an ensemble machine learning framework) and a residual neural network. The 

results of this investigation support the use of data from ST-T segment waveforms and QT interval time series for 

automated CAD identification using ECG analysis [5]. 

 

In this work, Cong et al. (2019) present a process based on deep learning for the classification and localization of 

stenosis on coronary angiography images from a cohort of 194 patients who participated in a multi center investigation. 

Furthermore, stenosis activation maps were used in a weakly supervised approach for stenoses positioning. Evaluative 

tests for detecting 3-CAT stenosis in the RCA and LCA and 2-CAT stenosis in the RCA and LCA were successfully 

detected with AUC values of 0.91/0.85 and 0.91/0.87, respectively. The sensitivity for the RCA and LCA for stenosis 

identification at the most critical sites was 0.72 and 0.60, respectively, and the mean squared error between the detected 
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and actual center points was 69.6 and 79.5 pixels in a 512 x 512 image. In these results, the approach is shown to be 

highly effective in classifying stenosis severity and satisfactory in localizing stenosis [6]. 

 

In this study, Ramprakash et al. (2020) developed a framework to understand the key principles of assessing patient 

risk profiles from clinical data factors. The suggested model is constructed using a statistical model in conjunction with 

a Deep Neural Network. The problem of fitting or overfitting has been solved. Both on training and testing datasets, 

this model performs better. The efficacy of the model to accurately forecast the presence of heart disease in individuals 

was tested using DNN and ANN methodologies. Training was done 242 times and validation was done 61 times. The 

same variables were in the training and testing datasets. The optimal configuration was identified using a grid search 

methodology. The weights were refined using an 80-20 holdout validation. Convergence threshold of 0.00001 is used 

and IBFGS algorithm is applied [7]. 

 

Vayadande et al. (2022) have taken Cleveland heart disease dataset in this study because heart and circulatory diseases 

are major global health problems and have caused major upheavals to medical field in recent years.s. Predicting or 

continuously monitoring patients with cardiac issues is complex and resource intensive in developing nations. Various 

data mining and machine learning techniques on the databases can accurately forecast the features of the cardiac 

condition. In this study, the Cleveland heart disease dataset is used, with 303 instances and 14 attributes, to apply 

multiple algorithms like Logistic Regression, SVM and Neural Networks. The aim is ultimately to build a good 

predictive model of cardiovascular disease that will be optimized by volume of diverse algorithms and the effectiveness 

will be tested with precision and sensitivity [8].  

 

III. PROPOSED METHODOLOGY 

 

A. Dataset 

The Cleveland Heart Disease Dataset which we used is from the UCI Machine Learning Repository and has 303 

instances with 14 attributes. One of these is a target variable indicating the presence of heart disease, and the remaining 

13 independent variables serve as support for predictive modeling. The dataset consists of 8 categorical and 5 

numerical variables, allowing for many different analytical approaches, summarized in Table 1. The patient records 

range in age from 29 to 79, thus allowing a detailed look at heart disease by demographics, including gender 

representation (coded as 1 for males and 0 for females). In addition, four types of angina are identified and critical 

numerical attributes like resting blood pressure and cholesterol levels are identified. Taken as a whole, this dataset 

offers a reasonably solid foundation of how to study the intricacies of disorders of the heart and their causes. 

 

Apart from the basic factors some key categorical attributes for diagnosing heart disease are included in the dataset. 

Binary sex means 1 for male and 0 for female. Chest pain type has four categories: (1) typical angina, (2) atypical 

angina, (3) non-anginal pain, (4) asymptomatic. The fasting blood sugar is binary, so 1 means a level >120 mg/dl (true) 

and 0 means otherwise (false). Estes' criteria categorize resting electrocardiogram results as normal (0), ST-T wave 

abnormality (1), or left ventricular hypertrophy (2). Angina induced by exercise is binary (1 for presence, 0 for 

absence). The slope of the peak exercise ST segment has three categories: (1) upsloping, (2) flat, and (3) downsloping. 

The target class is binary, 1 for heart disease and 0 for normal condition. The attributes also help to understand patient 

conditions for cardiovascular analysis. The same is summarised in Table 2. 
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Table 1. Data Description in detail 

 

Table 2. Nominal Data Description 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feature Extraction 

Cleveland heart disease dataset has 14 columns, containing both categorical and numerical variables, and no null 

entries. First, the dataset is subject to exploratory data analysis, and then categorical variables are encoded into a single 

hot vector. Single hot encoding is a process in which categorical variables are converted to multiple binary attributes, 

equal to the number of categories in the original variable. Newly created attributes use binary values, in which the value 

is 1 if the attribute is present in the original column for that particular row. For instance, the chest pain variable can 

have the values of 1, 2, 3 or 4. After this, the dataset is extracted to obtain the target variable, which is the presence or 

absence of heart disease in a patient, based on the attributes given in each row, and the categorical data is encoded to a 

single hot vector. Then, we partition the dataset into the training and testing set. The training set has dimensions 

S. No. Attribute Code given Unit Data type 

1 age Age in years Numeric 

2 sex Sex 1, 0 Binary 

3 chest pain type (CPT) chest pain type 1,2,3,4 Nominal 

4 resting blood pressure (RBP) resting bp S in mm Hg Numeric 

5 serum cholesterol (SC) cholesterol in mg/dl Numeric 

6 fasting blood sugar (FBS) fasting blood 

sugar 

1,0 > 120 mg/dl Binary 

7 resting electrocardiogram results 

(RER) 

resting ecg 0,1,2 Nominal 

8 maximum heart rate achieved 

(MHR) 

max heart rate 71-202 Numeric 

9 exercise induced angina (EIA) exercise angina 0,1 Binary 

10 oldpeak =ST oldpeak depression Numeric 

11 the slope of the peak exercise ST 

segment (STS) 

ST slope 0,1,2 Nominal 

12 Class  target 0,1 Binary 

Attribute Description 

Sex (M or F – Binary) 1 = male, 0= female; 

Chest Pain - Type Value 1: typical angina 

Value 2: atypical angina 

Value 3: non-anginal pain 

Value 4: asymptomatic 

Fasting Blood sugar 

(FBS) 

(fasting blood sugar > 120 mg/dl) (1 = true; 0 = false) 

Resting 

electrocardiogram 

results (RER) 

Value 0: normal  

Value 1: having ST-T wave abnormality (T wave inversions and/or ST 

elevation or depression of > 0.05 mV) 

Value 2: showing probable or definite left ventricular hypertrophy by Estes' 

criteria 

Exercise induced 

angina (EIA) 

1 = yes; 0 = no 

the slope of the peak 

exercise ST segment 

(STS) 

Value 1: upsloping 

Value 2: flat -- Value 3: downsloping 

Class (Binary) 1 = heart disease, 0 = Normal 
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(181,24) and the testing set dimensions (122,24) giving a train test split ratio of 0.40. Furthermore, the training set is 

further separated from the validation set. We will optimize model parameters using the training set, and use validator 

set to compute the loss function through it. 

The entire process flow is shown in figure 1. 

 

 
 

Fig 1. Process Flow Diagram 

 

Radial Basis Functions and Classification 

A Radial Basis Function (RBF) is a special type of mathematical function that, fundamentally, is based on distance in 

its calculations. RBFs have a unique characteristic in that they depend on the distance from a central point, and so can 

have a wide range of behaviors based on the parameters and criteria they use. By virtue of its inherent flexibility, RBFs 

can be adapted to be useful across many different applications in different fields, including machine learning and data 

analysis.  RBFs find one very important application, that of constructing artificial neural networks, in particular for 

classification. In this context, RBFs are used to define boundaries over data samples with the same label. The diagram 

of this classification technique is visually represented as distinct regions, each region having characteristics of the data 

points and corresponding to a specific label.  Defining these boundaries is an essential process because they permit the 

categorization of new, unseen data points according to their closeness to the already known regions. A simple 

classification mechanism can be used by assigning each closed region a label which reflects the majority of its 

constituent data samples. Yet, it should be noted that task of accurately defining these borders can be highly complex. 

A classification performed with RBF networks exhibits varying effectiveness under different circumstances: depending 

on the sample distribution, choosing the RBF parameters, and the number of dimensions in the feature space. This 

results in practitioners often finding it difficult to achieve optimal boundary definitions, which requires careful thought 

and possibly more advanced techniques to improve the classification process. 

 

 



© 2024 IJIRCCE | Volume 12, Issue 11, November 2024|                              DOI: 10.15680/IJIRCCE.2024.1211080

 
 

IJIRCCE©2024                                                                      | An ISO 9001:2008 Certified Journal |                                        12489 

 
 

Fig 2. Border between Classes 

 

A more effective approach is to use a range of clearly defined boundaries and combine them well to create a complex 

border. But this method is more creative and precise in design. Radical shapes, in particular, are nicely suited to this 

endeavor since their symmetrical nature and dynamic forms will contribute to the visual appeal of the border without 

losing structural coherence and balance. With the utilization of these geometric elements one can achieve a beautiful 

balance between simplicity and complexity to produce a strangely cool, sophisticated yet striking design that simply 

beckons you to really look and see what is actually there. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Border defined with RBF’s 

 

In the context of Radial Basis Functions (RBFs), it is important to note that data samples belonging to the same class 

can be covered by multiple circles (as shown in the accompanying figure). This characteristic permits a large increase 

in the coverage area, since each circle corresponds to a different RBF. In so far, more nuances and more flexibility of 

modeling data distribution are possible with utilizing plural RBFs, and therefore it would be possible to model 

complicated patterns and relationships between the data elements. Using this approach allows us to gain a more 

thorough insight into the underlying structure of the data, and as a result more effective classification and regression 

tasks. 

 

Gaussian Functions 

Kernel function is defined as any extra function that is related to some specific topic or mathematical framework, 

specifically in the context of machine learning and statistical modeling. Radial Basis Function Networks (RBFN) are 

one of the many kernel functions within the realm of RBFN, and one such kernel function is the Gaussian function that 

is a fundamental building block for many applications. The Gaussian function is characterized by its distinctive bell-

shaped curve and is mathematically expressed in equation 1. 

 g(k) = ae−∥k−b∥22c2 + d         (1) 
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This formula is based on a single input parameter, called k; and four internal parameters: a, b, c and d. While the initial 

form of the equation is the source of a certain flexibility in defining various Gaussian functions, this framework 

provides a lot of flexibility allowing for the way those functions are defined. Figure 3 shows a visual representation of 

the output of a Gaussian function as it changes with a one-dimensional distance, and explains the role that each 

parameter plays in the function. It is important to realize that the parameter k is the variable parameter, which is an 

outer point in the function. On the contrary, the parameter 'b' gives the centre of Gaussian function, which is 

fundamental in defining peak of function. In particular, when using Gaussian functions across different dimensional 

spaces, the "k" and "b" parameters are mostly changed. As an example, if we have a three-dimensional space the 

parameters will be (x, y, z) expanding the functionality of the function beyond a single dimension. In addition, the 

Radial Basis Function Network (RBFN) is composed of n different numeric input nodes, one for each distinct point in 

an n dimensional space. That is, parameter "b" can be positioned to include all input nodes, while keeping the minimum 

radius by varying parameter "k." Much work was done on analyzing different values of a and c that could define the 

RBF parameters including defining a and c and their effect on the RBF mean. Combined, these parameters constitute a 

complete set of tools to manipulate Gaussian functions in a multidimensional context, to be used in a variety of 

applications in data analysis and modeling. The RBFN graph is given in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

Fig 4. RBFN Graph 

 

An RBFN has an unusual architecture in that output neurons have connection weights to the radial basis functions 

(RBFs). The setup of this is so distinctive that it can be used to simplify the Gaussian function used in RBFs. In 

particular, we can eliminate consideration of the 'a' parameter, which is usually related to the width of the Gaussian, 

simplifying the application of the function within the network. Additionally, the coefficient of (2c²)⁻¹, which is obtained 
from the standard form of the Gaussian function, can be efficiently substituted with a parameter called beta (ß). This 

substitution not only improves the flexibility of the model but also makes it easier to define the RBF for use in RBFNs. 

Therefore, the revised RBF given in equation 2 can be written in such a way that they are optimally aligned with the 

operational dynamics of the network for better performance and adaptability in different applications. 

 g(k) = e−β∥ ∥ k − b ∥2         (2) 

 

RBFN for classification 

Radial Basis Function Networks (RBFNs) are a novel way to classify data by defining regions for different classes in 

an n dimensional space. RBFNs are different from Multi-Layer Perceptron Neural Networks (MLPNNs) that depend on 

building linear separation boundaries, but they use multiple Radial Basis Functions to separate these classes effectively. 

Several advantages over traditional MLPNNs are afforded by this methodology. The inherent flexibility of RBFNs in 

handling the complexity of the classification task is one of the most important benefits of RBFNs. RBFNs 

accommodate the dynamic addition or removal of RBFs to the network as the required separation boundaries become 

more intricate and specific. This allows the network to tune its performance according to data nature. In practice, the 

collective decisions of each RBF for the respective classes are aggregated in the RBFNs. The evaluation of the output 

from each RBF contributes to a comprehensive decision-making framework for the entire network. The robustness of 

classification can be improved by being able to contemplate the decision of multiple RBFs. Moreover, the number of 

RBFs in the network can improve greatly in classification accuracy. The most recent classification outcome is 

determined based on a linked class, and each RBF's decision is a foundational input. By taking a cumulative decision-

making approach, the network is able to refine its predictions over time, based on the new patient records or data points 

added to the system. As a result, the RBFN not only learns from new information, but also becomes more predictive. 
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B. Implementation 

Radial Basis Function (RBF) networks have almost uniform methodology concerning the training and testing. The 

training consists of generating a new RBF using multiple database records, potentially leading to areas of potential 

misclassification. As the training progresses, further RBFs are added, which can lead to the network behaving 

inconsistently with its training categories, and therefore, a special strategy is applied. RBF networks consist of two 

training layers: The RBFs are in the hidden layer and the weights in the output layer are linear and with sigmoid 

functions, so the training is in two parts. Feedback based supervised classification systems use a mechanism to refine 

their internal parameters with known input and known expected output. If the output layer does not work out, then node 

parameters must be adjusted. The RBFN structure is defined, but the algorithms can be modified for different outcomes 

depending on the application. 

 

Output Layer Training 

These nodes are characterized in this layer with specific weights (wi) for each of Radial Basis Function (RBF) nodes 

and specific values of the corresponding threshold values all together which lead to a desired result. A Radial Basis 

Function Network (RBFN) is a network that seeks to determine whether an input matches one or more pre-defined 

classes. Therefore, nodes of this layer must be considered as having a binary output mechanism. This is a Binary output 

meaning that it indicates whether a class membership is present or not, so that the network can classify inputs on the 

basis of how near they are to the center of the RBF nodes. A nuanced decision-making process is thus enabled such that 

each node assesses the input against its weight and threshold to produce a refined class, making the network more able 

to classify correctly and is given in equation 3. 

 

 Output = ∑wiRBFi >  Threshold          (3) 

 

Hidden layer training 

This layer is where nodes can be configured to the smallest degree possible with a specified array of parameters that are 

intricately tied to different kernel functions, with the Gaussian function being the focus of this study. In particular, the 

research uses the condensed Gaussian function, which exhibits its own unique properties and flexibility. This function 

incorporates two essential internal parameters that play a pivotal role in the training process: so the area of coverage (β) 
referring to the spread of width of the distribution, and the center position (b), the focal point of the Gaussian 

distribution. Together, these parameters enable us to refine the adjustment of the nodes in order to improve their ability 

to model complex data patterns. 

 

This initial determination of the positions of the Radial Basis Function (RBF) within the model is done using the 

foundational k-means algorithm. The training process unfolds through a series of methodical steps designed to optimize 

the performance of the RBF network. The steps are as follows: 

1. Data Aggregation: The organizing of the training dataset in the first place was to group together all instances with 

the same label. This step is important, since many more subtle distinctions are impossible to disentangle by the model 

from data that are not homogenous. 

 

2. Center Position Calculation: After grouping the data, we compute the next position, called “b,” which represents 

the centroid (or center of training data points) within a particular label category. To facilitate the RBF centreing, this 

centroid is computed by averaging the coordinates of all points in the group, i.e. finding a reference point around which 

the RBFs will be located. 

 

3. Average Distance Computation: After setting the center position, the algorithm will find out how far every training 

data point, or “a,” is from the centroid ‘b’, and sums them up in average distance, what we can refer to as “c”. It is this 

distance measurement that is important as it is the spread of the data around the centroid, and therefore provides a more 

nuanced understanding of the data distribution. 

 

4. Beta Parameter Setting: The second step is to choose the parameter β from the average distance “c.” In particular, 

we calculate β as β = (2c²)⁻¹. This parameter greatly determines the width of the RBF, determining how the function 
responds to input as a function of their distance from the centroid. 
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5. Weight Assignment: Finally, the algorithm gives the weights of the outputs a value corresponding to the 

classification. If the model gives a correct prediction, then the weight is 1, i.e. a high confidence on the model’s 

prediction. On the other hand, a weight of 0 is assigned for those outputs that don’t match the expected classification. 

The binary weighting system serves to reinforce the learning process by concentrating on the improvements in accuracy 

of the variable with the most errors. 

These systematic steps provide a powerful way for the k-means algorithm to initialize the RBFs in such a way that a 

robust training process opens the door for a strong improvement in the model's predictive capacity. 

 

Testing RBFN 

Each of the cardiac condition is represented by a particular neuron in the output layer of the neural network. The output 

neurons are given the values of a weighted input and Radial Basis Function (RBF) values. Each RBF value is computed 

by measuring the distance of each RBF to a reference point that is specified by the input neurons. This is important 

because it lets the network judge how close the input data is to the characteristics of known cardiac ills. 

Once fine-tuned during that training phase of a network, the internal parameters of the neurons are used to maximize 

performance and accuracy. The output of the network is generated through a series of systematic steps, which are as 

follows: 

 

1. Input Initialization: First, we have to set each input neuron value for the network to give. That's vital since it lays 

the groundwork for all other calculations. 

2. RBF Calculation: And we calculate the values of all the RBFs on the basis of input neurons. This calculation 

represents how well the input data is in converged with the given RBFs reference points for the RBFs network to 

distinguish between different cardiac conditions. 

3. Weighted Sum Calculation: After doing the RBF calculations, the network takes the input, computes the weighted 

sum for each output neuron. This is accomplished by multiplying the weight of each RBF and RBF value, and 

summing these results. First, this is necessary to determine which RBFs affect the output neurons. 

4. Threshold Application: A final step consists in applying a threshold to the sums of each of the neurons. This 

thresholding process allows us to determine whether or not the output neuron is activated (i.e., to translate the weighted 

input and RBF values into a definitive classification of the cardiac condition represented by that neuron). 

By performing these lengthy activities, this methodology of the neural network can properly evaluate and classify 

numerous cardiac diseases in accordance to the input data it is given, which is of great assistance to the medical 

diagnosis and patient care. 

 

IV. RESULTS 

 

A comprehensive evaluation of the model was performed using different performance metrics to gain a robust view of 

the model being effective. The precision, recall and F1 score key metrics were analyzed in detail as they are a critical 

basis of how the model’s capabilities for predicting are done. Of all the contemporary deep learning techniques, the 

radial basis function neural network showed an outstanding accuracy of 83%, so impressive that it was particularly 

noteworthy comparing with the performance of other deep learning techniques. Such accuracy shows the model to be 

reliable yet competitive over the advanced machine learning frameworks landscape. The precision score was recorded 

at 0.782 and we delve deeper into the individual metrics. This means that when the model predicts a positive outcome, 

it is correct 78.2% of the time, which is a reasonable level of reliability in the positive identifications. Additionally, the 

model was able to recall 93% of the actual positive cases at 0.930. In particular, this high recall rate is helpful in 

situations where the cost of missing a positive case is high. 

 

The F1 score (F1 score) of 0.850 balanced precision and recall. This is important because it gives us a single score, 

which combines the model’s accuracy in positive predictions with its ability to capture all relevant instances. The 

strength of the performance is indicated by a score of 0.850 which indicates that the model generally has good trade-off 

between precision and recall.  

 

In addition, the area under the receiver operating characteristic (ROC) curve was 0.911. It is also this value that 

indicates how well this model performs as the true positive rate relative to the false positive rate at a variety of 

thresholds. The radial basis function neural network perform so well in classification that the corresponding AUC 

stands at 0.911 and suggests that the model is very good at distinguishing positive class and negative class.  
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In summary, the radial basis function neural network capabilities are strong in its domain and is a reliable as well as a 

good approximator of some function. This has been visualized in Figure 5 as ROC Curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. ROC Curve 

 

V. CONCLUSION AND FUTURE WORK 

 

In medicine, identifying and prognosing heart disease is critical. This work introduces Radial Basis Functions (RBFs) 

and Radial Basis Function Networks (RBFN) and proposes a new method for classifying heart disease in patient 

records using an automated continuous improvement technique. RBFNs are simpler, more flexible, with only three 

layers, and thus more efficient than Multi-Layer Perceptron Neural Networks (MLPNN). We are currently 

implementing the RBFN classifier system and expect it to perform better than MLPNN using a large amount of patient 

records. The core implementation is complete, and the user interface design is underway for the purpose of 

demonstrating the system’s potential in cardiac disease classification. It is expected that this method will impact other 

classification methods to increase their accuracy and future studies will explore deep learning techniques such as Deep 

Belief Networks, Restricted Boltzmann Machines, and Deep Autoencoders to further improve diagnostic accuracy. 
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