

 Volume 12, Issue 6, June 2024

Impact Factor: 8.379

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 6, June 2024 ||

 | DOI: 10.15680/IJIRCCE.2023.1206032 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 8615

Energy Efficiency across Programming Languages

Suhesh Rajendra Pawar, Narendar Kumar Nishad, Prof. Ravindra Kerkar

Department of MCA, Finolex Academy of Management and Technology, Ratnagiri, Maharashtra, India

ABSTRACT: This paper presents a study of the runtime, memory usage and energy consumption of twenty seven

well-known software languages. We monitor the performance of such languages using ten different programming

problems, expressed in each of the languages. Our results show interesting findings, such as, slower/faster languages

consuming less/more energy, and how memory usage influences energy consumption. We show how to use our results

to provide software engineers support to decide which language to use when energy efficiency is a concern.

CCS Concepts • Software and its engineering → Software performance; General programming languages;

KEYWORDS: Energy Efficiency, Programming Languages, Language Benchmarking, Green Software

I. INTRODUCTION

Software language engineering provides powerful techniques and tools to design, implement and evolve software

languages. Such techniques aim at improving programmers

productivity - by incorporating advanced features in the language design, like for instance powerful modular and type

systems and at efficiently execute such software - by developing, for example, aggressive compiler optimizations.

Indeed, most techniques were developed with the main goal of helping software developers in producing faster

programs. In fact, in the last century performance in software languages was in almost all cases synonymous of fast

execution time (embedded systems were probably the single exception).

In this century, this reality is quickly changing and software energy consumption is becoming a key concern for

computer manufacturers, software language engineers, programmers, and even regular computer users. Nowadays, it is

usual to see mobile phone users (which are powerful computers) avoiding using CPU intensive applications just to save

battery/energy. While the concern on the computers’ energy efficiency started by the hardware manufacturers, it

quickly became a concern for software developers too. In fact, this is a recent and intensive area of research where

several techniques to analyze and optimize the energy consumption of software systems are being developed. Such

techniques already provide knowledge on the energy efficiency of data structures and android language, the energy

impact of different programming practices both in mobile and desktop applications, the energy efficiency of

applications within the same scope, or even on how to predict energy consumption in several software systems, among

several other works.

 An interesting question that frequently arises in the software energy efficiency area is whether a faster program is also

an energy efficient program, or not. If the answer is yes, then optimizing a program for speed also means optimizing it

for energy, and this is exactly what the compiler construction community has been hardly doing since the very

beginning of software languages. However, energy consumption does not depend only on execution time, as shown in

the equation Energy = Time ×Power. In fact, there are several research works showing different results regarding this

subject. A similar question arises when comparing software languages: is a faster language, a greener one? Comparing

software languages, however, is an extremely complex task, since the performance of a language is influenced by the

quality of its compiler, virtual machine, garbage collector, available libraries, etc. Indeed, in this paper we analyze the

performance of twenty seven software languages. We consider ten different programming problems that are expressed

in each of the languages, following exactly the same algorithm, as defined in the Computer Language Benchmark

Game (CLBG). We compile/execute such programs using the state-of-the-art compilers, virtual machines, interpreters,

and libraries for each of the 27 languages. Afterwards, we analyze the performance of the different implementation

considering three variables: execution time, memory consumption and energy consumption. Moreover, we analyze

those results according to the languages’ execution type (compiled, virtual machine and interpreted), and programming

paradigm (imperative, functional, object oriented, scripting) used. For each of the execution types and programming

paradigms, we compiled a software language ranking according to each variable considered. Our results show

interesting findings, such as, slower/faster software languages consuming less/more energy, and how memory usage

influences energy consumption. Moreover, we discuss how to use such results to provide software engineers support to

decide which language to use when energy efficiency is a concern.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 6, June 2024 ||

 | DOI: 10.15680/IJIRCCE.2023.1206032 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 8616

This work builds on previous work where it was presented a framework to allow the monitoring of the energy

consumption of executable software programs. In that work, the C-based framework was used to define a preliminary

ranking of ten languages (where only energy was considered). We reuse the energy monitoring framework to analyze

the energy efficiency of 27 languages and (almost) 270 programs. We have also extended it in order to monitor

memory consumption, as well.

This paper is organized as follows: the detailed steps of our methodology to measure and compare energy efficiency in

software languages, followed by a presentation of the results. analysis and discussion on the obtained results, where we

first analyze whether execution time performance implies energy efficiency, then we examine the relation between

peak memory usage and memory energy consumption, and finally we present a discussion on how energy, time and

memory relate in the 27 software languages. Then we discuss the threats to the validity of our study. we present the

related work, and finally, we present the conclusions of our work.

II. LITERATURE REVIEW

The work presented in this paper extends the work presented by, where the energy consumption monitoring approach

for different programming languages was introduced. The main focus of was the methodology and the comparison of

the CPU-based energy efficiency in 10 of the 28 languages. We made a wider and more in-depth analysis, since in

addition to including all languages, we also included the DRAM-based energy consumption and peak memory usage

values, and presented a discussion on how energy, time and energy relate in software, and on different languages

divided by type and paradigm.

The CLBG benchmark solutions have already been used for validation purpose by several research works. Among

other examples, CLGB was used to study dynamic behavior of non-Java JVM languages, to analyze dynamic scripting

languages and compiler optimizations, or even to benchmark a JIT compiler for PHP. At the best of our knowledge,

CLGB was only used once for energy consumption analysis. In, the authors used the provided Haskell

implementations, among other benchmarks, to analyze the energy efficiency of Hakell programs from strictness and

concurrency perspectives, while also analyzing the energy influence of small implementation changes. The authors of

also used CLBG to compare JavaScript, Java, and C++ in an Android setting.

While several works have shown indications that a more time efficient approach does not always lead to the most

energy efficient solution], these results were not the intended focus nor main contribution, but more of a side

observation per se. We focused on trying to understand and directly answer this question of how energy efficiency and

time relate.

Nevertheless, the energy efficiency in software problem has been growing in interest in the past few years. In fact,

studies have emerged with different goals and in different areas, with the common vision of understanding how

development aspects affect the energy consumption in diversified software systems. For instance, for mobile

applications, there are works focused on analyzing the energy efficiency of code blocks, or just monitoring how energy

consumption evolves over time. Other studies aimed at a more extensive energy consumption analysis, by comparing

the energy efficiency of similar programs in specific usage scenarios or by providing conclusions on the energy impact

of different implementation decisions. Several other works have shown that several factors, such as different design

patterns, coding practices and data structures actually have a significant influence in the software’s energy efficiency.

III. PROBLEM DEFINITION

The ever-increasing reliance on computing devices in everyday life has highlighted the importance of energy efficiency

in software development. As energy consumption continues to escalate with the increase of data centers, mobile

devices, and global computing, optimizing software for energy efficiency has become critical. Despite advancements in

hardware technologies aimed at reducing energy usage, software optimization remains a significant and underutilized

avenue for achieving greater energy efficiency.

While various factors such as algorithms, data structures, and compiler optimizations influence software energy

consumption, the impact of the programming language itself is not well-understood. Existing studies on this subject are

limited in scope, often focusing on a narrow set of languages or specific types of tasks, thus providing an incomplete

picture of the energy efficiency landscape across programming languages.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 6, June 2024 ||

 | DOI: 10.15680/IJIRCCE.2023.1206032 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 8617

IV. OBJECTIVE & SCOPE

Objective:
To comprehensively evaluate the energy efficiency of different programming languages, considering their impact on

energy consumption, execution time, and memory usage across a range of standard computational tasks.

Analyzing the performance of twenty seven software languages. We consider ten different programming problems that

are expressed in each of the languages, following exactly the same algorithm, as defined in the Computer Language

Benchmark Game (CLBG). We compile/execute such programs using the state-of-the-art compilers, virtual machines,

interpreters, and libraries for each of the 27 languages

Investigating the performance of the different implementation considering three variables: execution time, memory

consumption and energy consumption.

Scope:
This study will focus on a selection of popular programming languages representing diverse paradigms and typical

application domains.

The overall motivation is to be able to compare solutions, within and between, different programming languages. While

the perspectives for comparing solutions have originally essentially analyzed runtime performance.

List of programming languages used are listed below

Paradigm Languages

Functional : Erlang, F#, Haskell, Lisp, Ocaml, Perl, Racket, Ruby, Rust;

Imperative : Ada, C, C++, F#, Fortran, Go, Ocaml, Pascal, Rust;

Object Oriented : Ada, C++, C#, Chapel, Dart , F#, Java, JavaScript, Ocaml, Perl, PHP, Python, Racket, Rust,

Smalltalk, Swift, TypeScript

 Scripting : Dart, Hack, JavaScript, J Ruby, Lua, Perl, PHP, Python, Ruby, TypeScript;

 V. RESEARCH METHODOLOGY

Measuring Energy in Software Languages
The initial motivation and primary focus of this work is to understand the energy efficiency across various

programming languages. This might seem like a simple task, but it is not as trivial as it sounds. To properly compare

the energy efficiency between programming languages, we must obtain various comparable implementations with a

good representation of different problems/solutions.

With this in mind, we begin by trying to answer the following research question:

• RQ1: Can we compare the energy efficiency of software languages? This will allow us to have results in which we

can in fact compare the energy efficiency of popular programming languages. In having these results, we can also

explore the relations between energy consumption, execution time, and memory usage.

The following subsections will detail the methodology used to answer this question, and the results we obtained.

The Computer Language Benchmarks Game

In order to obtain a comparable, representative and extensive set of programs written in many of the most popular and

most widely used programming languages we have explored The Computer Language Benchmarks Game. (CLBG).

The CLBG initiative includes a framework for running, testing and comparing implemented coherent solutions for a set

of well-known, diverse programming problems. The overall motivation is to be able to compare solutions, within and

between, different programming languages. While the perspectives for comparing solutions have originally essentially

analyzed runtime performance, the fact is that CLBG has recently also been used in order to study the energy efficiency

of software.

In its current development stage, the CLBG has gathered solutions for 13 benchmark problems, such that solutions to

each such problem must respect a given algorithm and specific implementation guidelines. Solutions to each problem

are expressed in, at most, 28 different programming languages.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 6, June 2024 ||

 | DOI: 10.15680/IJIRCCE.2023.1206032 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 8618

The complete list of benchmark problems in the CLBG covers different computing problems, as described in Table 1.

Additionally, the complete list of programming languages in the CLBG is shown in Table 2, sorted by their paradigms.

Design and Execution
Our case study to analyze the energy efficiency of software languages is based on the CLBG.

Table 1. CLBG corpus of programs.

Benchmark Description Input

n-body
Double precision N-body simulation

50M

Fannkuch-redux Indexed access to tiny integer sequence
12

spectralnorm Eigenvalue using the power method
5,500

mandelbrot
Generate Mandelbrot set portable bitmap file

16,000

Pi digits
Streaming arbitrary precision arithmetic

10,000

regex-redux
Match DNA 8mers and

substitute magic patterns

fasta output

fasta
Generate and write random

DNA sequences
25M

k-nucleotide
Hash table update and k-nucleotide strings fasta output

Reverse complement Read DNA sequences, write their reverse-complement fasta output

binary-trees
Allocate, traverse and deallocate many binary trees

21

Chameneos redux Symmetrical thread rendezvous requests
6M

Table 2. Languages sorted by paradigm

Paradigm Languages

Functional

Erlang, F#, Haskell, Lisp, Ocaml, Perl,

Racket, Ruby, Rust;

Imperative

Ada, C, C++, F#, Fortran, Go, Ocaml,

Pascal, Rust;

Object-

Oriented

Ada, C++, C#, Chapel, Dart , F#, Java,

JavaScript, Ocaml, Perl, PHP, Python, Racket, Rust, Smalltalk, Swift,

TypeScript;

Scripting

Dart, Hack, JavaScript, J Ruby, Lua, Perl,

PHP, Python, Ruby, TypeScript;

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 6, June 2024 ||

 | DOI: 10.15680/IJIRCCE.2023.1206032 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 8619

 From the 28 languages considered in the CLBG, we excluded Smalltalk since the compiler for that language is

proprietary. Also, for comparability, we have discarded benchmark problems whose language coverage is below the

threshold of 80%. By language coverage we mean, for each benchmark problem, the percentage of programming

languages (out of 27) in which solutions for it are available. These criteria excluded chameneos-redux, meteor-contest

and thread-ring from our study.

We then gathered the most efficient (i.e. fastest) version of the source code in each of the remaining 10 benchmark

problems, for all the 27 considered programming languages.

The CLBG documentation also provides information about the specific compiler/runner version used for each

language, as well as the compilation/execution options considered (for example, optimization flags at compile/run

time). We strictly followed those instructions and installed the correct compiler versions, and also ensured that each

solution was compiled/executed with the same options used in the CLBG. Once we had the correct compiler and

benchmark solutions for each language, we tested each one individually to make sure that we could execute it with no

errors and that the output was the expected one.

The next step was to gather the information about energy consumption, execution time and peak memory usage for

each of the compliable and executable solutions in each language. It is to be noted that the CLBG already contains

measured information on both the execution time and peak memory usage. We measured both not only to check the

consistency of our results against the CLBG, but also since different hardware specifications would bring about

different results. For measuring the energy consumption, we used Intel’s Running Average Power Limit (RAPL) too,

which is capable of providing accurate energy estimates at a very fine-grained level, as it has already been proven.

Also, the current version of RAPL allows it to be invoked from any program written in C and Java.

In order to properly compare the languages, we needed to collect the energy consumed by a single execution of a

specific solution. In order to do this, we used the system function call in C, which executes the string values which are

given as arguments; in our case, the command necessary to run a benchmark solution (for example, the binary-trees

solution written in Python is executed by writing the command /usr/bin/python binarytrees.py 21)

.

The energy consumption of a solution will then be the energy consumed by the system call, which we measured using

RAPL function calls. The overall process (i.e., the workflow of our energy measuring framework) is described in

Listing 1.

...

for (i = 0 : i < N ; i++){

time_before = getTime(...);

//performs initial energy measurement rapl_before(...);

//executes the program system(command);

//computes the difference between //this measurement and the initial one rapl_after(...); time_elapsed = getTime(...) -

time_before; ...

}

...

Listing 1. Overall process of the energy measuring framework.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 6, June 2024 ||

 | DOI: 10.15680/IJIRCCE.2023.1206032 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 8620

In order to ensure that the overhead from our measuring framework, using the system function, is negligible or non-

existing when compared to actually measuring with RAPL inside a program’s source code, we design a simple

experiment. It consisted of measuring the energy consumption inside of both a C and Java language solution, using

RAPL and jRAPL respectively, and comparing the results to the measurements from our C language energy measuring

framework. We found the resulting differences to be insignificant, and therefore negligible, thus we conclude that we

could use this framework without having to worry about imprecisions in the energy measurements.

Also, we chose to measure the energy consumption and the execution time of a solution together, since the overhead

will be the same for every measurement, and so this should not affect the obtained values.

The memory usage of a solution was gathered using the time tool, available in Unix-based systems. This tool runs a

program given as an argument, and summarizes the system resources used by that program, which includes the peak of

memory usage.

Each benchmark solution was executed and measured 10 times, in order to obtain 10 energy consumption and

execution time samples. We did so to reduce the impact of cold starts and cache effects, and to be able to analyze the

measurements’ consistency and avoid outliers. We followed the same approach when gathering results for memory

usage.

For some benchmark problems, we could not obtain any results for certain programming languages. In some cases,

there was no source code available for the benchmark problem (i.e., no implementation was provided in a concrete

language which reflects a language coverage below 100%).

In other cases, the code was indeed provided but either the code itself was already buggy or failing to compile or

execute, as documented in CLBG, or, in spite of our best efforts, we could not execute it, e.g., due to missing libraries.
1

From now on, for each benchmark problem, we will refer as its execution coverage to the percentage of (best) solutions

for it that we were actually able to successfully execute.

All studies were conducted on a desktop with the following specifications: Linux Ubuntu Server 16.10 operating

system, kernel version 4.8.0-22-generic, with 16GB of RAM, a Haswell Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz.

Results
The results from our study are partially shown in this section, with the remainder shown in the online appendix for this

paper. Table 3, and the left most tables under Results - A. Data Tables in the appendix, contains the measured data from

different benchmark solutions. We only show the results for binary-trees, fannkuch-redux, and fasta within the paper,

which are the first 3 ordered alphabetically. Each row in a table represents one of the 27 programming languages which

were measured.

The 4 rightmost columns, from left to right, represent the average values for the Energy consumed (Joules), Time of

execution (milliseconds), Ratio between Energy and Time, and the amount of peak memory usage in Mb. The Energy

value is the sum of CPU and DRAM energy consumption. Additionally, the Ratio can also be seen as the average

Power, expressed in Kilowatts (kW). The rows are ordered according to the programming language’s energy

consumption, from lowest to highest. Finally, the right most tables under Results - A. Data Tables contain the standard

deviation and average values for our measured CPU, DRAM, and Time, allowing us to understand the variance.

The first column states the name of the programming languages, preceded by either a (c), (i), or (v) classifying them as

either a compiled, interpreted, or virtual-machine language, respectively. In some cases, the programming language

name will be followed with a ↑x/↓y and/or ⇑x/⇓y symbol. The first set of arrows indicates that the language would go

up by x positions (↑x) or down by y positions (↓y) if ordered by execution time. For example in Table 3, for the fasta

benchmark, Fortran is the second most energy efficient language, but falls off 6 positions down if ordered by execution

time. The second set of arrows states that the language would go up by x positions (⇑x) or down by y positions (⇓y) if

ordered according to their peak memory usage. Looking at the same example benchmark, Rust, while the most energy

efficient, would drop 9 positions if ordered by peak memory usage.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 6, June 2024 ||

 | DOI: 10.15680/IJIRCCE.2023.1206032 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 8621

Table 4 shows the global results (on average) for Energy, Time, and Mb normalized to the most efficient language in

that category. Since the pidigits benchmark solutions only contained less than half of the languages covered, we did not

consider this one for the global results. The base values are as follows: Energy for C is 57.86J, Time for C is

2019.26ms, and Mb for Pascal is 65.96Mb. For instance, Lisp, on average, consumes 2.27x more energy (131.34J) than

C, while taking 2.44x more time to execute (4926.99ms), and 1.92x more memory (126.64Mb) needed when compared

to Pascal.

To better visualize and interpret the data, we also generated two different sets of graphical data for each of the

benchmarks. The first set, Figures 1-3 and the left most figures under Results - C. Energy and Time Graphs in the

appendix, contains the results of each language for a benchmark, consisting of three joint parts: a bar chart, a line chart,

and a scatter plot. The bars represent the energy consumed by the languages, with the CPU energy consumption on the

bottom half in blue dotted bars and DRAM energy consumption on the top half in orange solid bars, and the left y-axis

representing the average Joules. The execution time is represented by the line chart, with the right y-axis representing

average time in milliseconds. The joining of these two charts allow us to better understand the relationship between

energy and time. Finally, a scatter plot on top of both represents the ratio between energy consumed and execution

time. The ratio plot allows us to understand if the relationship between energy and time is consistent across languages.

A variation in these values indicates that energy consumed is not directly proportional to time, but dependent on the

language and/or benchmark solution.

The second set, Figures 4-6 and the right most figures under Results - C. Energy and Time Graphs in the appendix,

consists of two parts: a bar chart, and a line chart. The blue bars represent the DRAM’s energy consumption for each of

the languages, with the left y-axis representing the average Joules. The orange line chart represents the peak memory

usage for each language, with the right y-axis representing the average Mb. The joining of these two allows us to look

at the relation between DRAM energy consumption and the peak memory usage for each language in each benchmark.

By turning to the CLBG, we were able to use a large set of software programming languages which solve various

different programming problems with similar solutions. This allowed us to obtain a comparable, representative, and

extensive set of programs, written in several of the most popular languages, along with the compilation/execution

options, and compiler versions. With these joined together with our energy measurement framework, which uses the

accurate Intel RAPL tool, we were able to measure, analyze, and compare the energy consumption, and in turn the

energy efficiency, of software languages, thus answering RQ1 as shown with our results. Additionally, we were also

able to measure the execution time and peak memory usage which allowed us to analyze how these two relate with

energy consumption. The analysis and discussion of our results is shown in the next section.

VI. ANALYSIS AND FINDINGS

 In this section we will present an analysis and discussion on the results of our study. While our main focus is on

understanding the energy efficiency in languages, we will also try to understand how energy, time, and memory relate.

Additionally, in this section we will try to answer the following three research questions, each with their own

designated subsection.

 RQ2: Is the faster language always the most energy efficient? Properly understanding this will not only address if

energy efficiency is purely a performance problem, but also allow developers to have a greater understanding of

how energy and time relates in a language, and between languages.

 RQ3: How does memory usage relate to energy consumption? Insight on how memory usage affects energy

consumption will allow developers to better understand how to manage memory if their concern is energy

consumption.

 RQ4: Can we automatically decide what is the best programming language considering energy, time, and memory

usage? Often times developers are concerned with more than one (possibly limited) resource. For example, both

energy and time, time and memory space, energy and memory space or all three. Analyzing these trade-offs will

allow developers to know which programming languages are best in a given scenarios.

Is faster, greener?
A very common misconception when analyzing energy consumption in software is that it will behave in the same way

execution time does. In other words, reducing the execution time of a program would bring about the same amount of

energy reduction. In fact, the Energy equation, Energy (J) = Power (W) x Time(s), indicates that reducing time implies

a reduction in the energy consumed. However, the Power variable of the equation, which cannot be assumed as a

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 6, June 2024 ||

 | DOI: 10.15680/IJIRCCE.2023.1206032 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 8622

constant, also has an impact on the energy. Therefore, conclusions regarding this issue diverge sometimes, where some

works do support that energy and time are directly related, and the opposite was also observed.

The data presented in the aforementioned tables and figures lets us draw an interesting set of observations regarding the

efficiency of software languages when considering both energy consumption and execution time. Much like and, we

observed different behaviors for energy consumption and execution time in different languages and tests.

By observing the data in Table 4, we can see that the C language is, overall, the fastest and most energy efficient.

Nevertheless, in some specific benchmarks there are more efficient solutions (for example, in the fasta benchmark it is

the third most energy efficient and second fastest).

Execution time behaves differently when compared to energy efficiency. The results for the 3 benchmarks presented in

Table 3 (and the remainder shown in the appendix) show several scenarios where a certain language energy

consumption rank differs from the execution time rank (as the arrows in the first column indicate). In the fasta

benchmark, for example, the Fortran language is second most energy efficient, while dropping 6 positions when it

comes to execution time. Moreover, by observing the Ratio values in Figures 1 to 3 (and the remainder in the appendix

under Results - C. Energy and Time Graphs), we clearly see a substantial variation between languages. This means that

the average power is not constant, which further strengthens the previous point. With this variation, we can have

languages with very similar energy consumptions and completely different execution times, as is the case of languages

Pascal and Chapel in the binary trees benchmark, which energy consumption differ roughly by 10% in favor of Pascal,

while Chapel takes about 55% less time to execute.

Table 3. Results for binary-trees, fannkuch-redux, and fasta

binary-trees fannkuch-redux fasta

 Energy Time Ratio Mb Energy Time Ratio Mb Energy Time Ratio Mb

(c) C 39.80 1125 0.035 131 (c) C ⇓2 215.92 6076 0.036 2 (c) Rust ⇓9 26.15 931 0.028 16

(c) C++ 41.23 1129 0.037 132 (c) C++ ⇑1 219.89 6123 0.036 1 (c) Fortran
↓
6

27.62 1661 0.017 1

(c) Rust ⇓2 49.07 1263 0.039 180 (c) Rust ⇓
11

238.30 6628 0.036 16 (c) C ↑1 ⇓1 27.64 973 0.028 3

(c) Fortran ⇑
1

69.82 2112 0.033 133 (c) Swift ⇓
5

243.81 6712 0.036 7 (c) C++ ↑1 ⇓2

34.88 1164 0.030 4

(c) Ada ⇓1 95.02 2822 0.034 197 (c) Ada ⇓2 264.98 7351 0.036 4 (v) Java ↑1 ⇓12

35.86 1249 0.029 41

(c) Ocaml

↓1 ⇑2

100.74 3525 0.029 148 (c) Ocaml
↓

1

277.27 7895 0.035 3 (c) Swift ⇓
9

37.06 1405 0.026 31

(v) Java ↑1 ⇓16

111.84 3306 0.034 1120 (c) Chapel

↑1 ⇓18

285.39 7853 0.036 53 (c) Go
↓
2 40.45 1838 0.022 4

(v) Lisp ↓3 ⇓3

149.55 10570 0.014 373 (v) Lisp ↓3 ⇓15

309.02 9154 0.034 43 (c) Ada ↓2 ⇑3

40.45 2765 0.015 3

(v) Racket

↓4 ⇓6

155.81 11261 0.014 467 (v) Java ↑1 ⇓13

311.38 8241 0.038 35 (c) Ocaml

↓2 ⇓15

40.78 3171 0.013 201

(i) Hack ↑2 ⇓9

156.71 4497 0.035 502 (c) Fortran ⇓
1

316.50 8665 0.037 12 (c) Chapel

↑5 ⇓10

40.88 1379 0.030 53

(v) C# ↓1 ⇓1

189.74 10797 0.018 427 (c) Go ↑2 ⇑7

318.51 8487 0.038 2 (v) C# ↑4 ⇓5

45.35 1549 0.029 35

(v) F# ↓3 ⇓1

207.13 15637 0.013 432 (c) Pascal ⇑
10

343.55 9807 0.035 2 (i) Dart ⇓6 63.61 4787 0.013 49

(c) Pascal

↓3 ⇑5

214.64 16079 0.013 256 (v) F# ↓1 ⇓7

395.03 10950 0.036 34 (i)

JavaScript ⇓1

64.84 5098 0.013 30

(c) Chapel

↑5 ⇑4

237.29 7265 0.033 335 (v) C# ↑1 ⇓5

399.33 10840 0.037 29 (c) Pascal

↓1 ⇑13

68.63 5478 0.013 0

(v) Erlang

↑5 ⇑1

266.14 7327 0.036 433 (i)

JavaScript

↓1 ⇓2

413.90 33663 0.012 26 (i)

TypeScript

↓2 ⇓10

82.72 6909 0.012 271

(c) Haskell 270.15 11582 0.023 494 (c) Haskell 433.68 14666 0.030 7 (v) F# ↑2 93.11 5360 0.017 27

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 6, June 2024 ||

 | DOI: 10.15680/IJIRCCE.2023.1206032 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 8623

Figure 1. Energy and time graphical data for binary-trees

Figure 2. Energy and time graphical data for fannkuch-redux

↑2 ⇓2 ↑1 ⇑8 ⇑3

(i) Dart ↓1 ⇑1

290.27 17197 0.017 475 (i) Dart ⇓7 487.29 38678 0.013 46 (v) Racket

↓1 ⇑5

120.90 8255 0.015 21

(i)

JavaScript

↓2 ⇓4

312.14 21349 0.015 916 (v) Racket ⇑
3

1,941.53 43680 0.044 18 (c) Haskell

↑2 ⇓8

205.52 5728 0.036 446

(i)

TypeScript

↓2 ⇓2

315.10 21686 0.015 915 (v) Erlang ⇑
3

4,148.38 101839 0.041 18 (v) Lisp ⇓2 231.49 15763 0.015 75

(c) Go ↑3 ⇑13

636.71 16292 0.039 228 (i) Hack ⇓6 5,286.77 115490 0.046 119 (i) Hack ⇓3 237.70 17203 0.014 120

(i) Jruby

↑2 ⇓3

720.53 19276 0.037 1671 (i) PHP 5,731.88 125975 0.046 34 (i) Lua ⇑18 347.37 24617 0.014 3

(i) Ruby ⇑5 855.12 26634 0.032 482 (i)

TypeScript

↓4 ⇑4

6,898.48 516541 0.013 26 (i) PHP ↓1 ⇑13

430.73 29508 0.015 14

(i) PHP ⇑3 1,397.51 42316 0.033 786 (i) Jruby

↑1 ⇓4

7,819.03 219148 0.036 669 (v) Erlang

↑1 ⇑12

477.81 27852 0.017 18

(i) Python ⇑
15

1,793.46 45003 0.040 275 (i) Lua ↓3 ⇑19

8,277.87 635023 0.013 2 (i) Ruby ↓1 ⇑2

852.30 61216 0.014 104

(i) Lua
↓

1 2,452.04 209217 0.012 1961 (i) Perl ↑2 ⇑12

11,133.49 249418 0.045 12 (i) JRuby

↑1 ⇓2

912.93 49509 0.018 705

(i) Perl
↑

1 3,542.20 96097 0.037 2148 (i) Python

↑2 ⇑14

12,784.09 279544 0.046 12 (i) Python

↓1 ⇑18

1,061.41 74111 0.014 9

(c) Swift n.e. (i) Ruby ↑2 ⇑17

14,064.98 315583 0.045 8 (i) Perl ↑1 ⇑8

2,684.33 61463 0.044 53

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 6, June 2024 ||

 | DOI: 10.15680/IJIRCCE.2023.1206032 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 8624

Figure 3. Energy and time graphical data for fasta

Energy Efficiency across Programming Languages

Figure 4. Energy and memory graphical data for binary-trees

Figure 5. Energy and memory graphical data for fannkuch-redux

Figure 6. Energy and memory graphical data for fasta

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 6, June 2024 ||

 | DOI: 10.15680/IJIRCCE.2023.1206032 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 8625

Compiled languages tend to be, as expected, the fastest and most energy efficient ones. On average, compiled

languages consumed 120J to execute the solutions, while for virtual machine and interpreted languages this value was

576J and 2365J, respectively. This tendency can also be observed for execution time, since compiled languages took

5103ms, virtual machine languages took 20623ms, and interpreted languages took 87614ms (on average). Grouped by

the different paradigms, the imperative languages consumed and took on average 125J and 5585ms, the object-oriented

consumed 879J and spent 32965ms, the functional consumed 1367J and spent 42740ms and the scripting languages

consumed 2320J and spent 88322ms.

Moreover, the top 5 languages that need less energy and time to execute the solutions are: C (57J, 2019ms), Rust (59J,

2103ms), C++ (77J, 3155ms), Ada (98J, 3740ms), and Java (114J, 3821ms); of these, only Java is not compiled. As

expected, the bottom 5 languages were all interpreted: Perl (4604J), Python (4390J), Ruby (4045J), JRuby (2693J), and

Lua

(2660Js) for energy; Lua (167416ms), Python (145178ms), Perl (132856ms), Ruby (119832ms), and TypeScript

(93292ms) for time.

The CPU-based energy consumption always represents the majority of the energy consumed. On average, for the

compiled languages, this value represents 88.94% of the energy consumed, being the remaining portion assigned to

DRAM. This value is very similar for virtual machine (88.94%) and interpreted languages (87.98%). While, as

explained in the last point, the overall average consumption for these 3 language types is very different, the ratio

between CPU and DRAM based energy consumption seems to generally maintain the same proportion. This might

indicate that optimizing a program to reduce the CPU-based energy consumption will also decrease the DRAM-based

energy consumption. However, it is interesting to notice that this value varies more for interpreted languages (min of

81.57%, max of 92.90%) when compared to compiled (min of 85.27%, max of 91.75%) or virtual machine languages

(min of 86.10%, max of 92.43%).

With these results, we can try to answer the question raised in RQ2: Is the faster language always the most energy

Table 4. Normalized global results for Energy, Time, and Memory

 Energy Time Mb

(c) C 1.00 (c) C 1.00 (c) Pascal 1.00

(c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05

(c) C++ 1.34 (c) C++ 1.56 (c) C 1.17

(c) Ada 1.70 (c) Ada 1.85 (c) Fortran 1.24

(v) Java 1.98 (v) Java 1.89 (c) C++ 1.34

(c) Pascal 2.14 (c) Chapel 2.14 (c) Ada 1.47

(c) Chapel 2.18 (c) Go 2.83 (c) Rust 1.54

(v) Lisp 2.27 (c) Pascal 3.02 (v) Lisp 1.92

(c) Ocaml 2.40 (c) Ocaml 3.09 (c) Haskell 2.45

(c) Fortran 2.52 (v) C# 3.14 (i) PHP 2.57

(c) Swift 2.79 (v) Lisp 3.40 (c) Swift 2.71

(c) Haskell 3.10 (c) Haskell 3.55 (i) Python 2.80

(v) C# 3.14 (c) Swift 4.20 (c) Ocaml 2.82

(c) Go 3.23 (c) Fortran 4.20 (v) C# 2.85

(i) Dart 3.83 (v) F# 6.30 (i) Hack 3.34

(v) F# 4.13 (i) JavaScript 6.52 (v) Racket 3.52

(i) JavaScript 4.45 (i) Dart 6.67 (i) Ruby 3.97

(v) Racket 7.91 (v) Racket 11.27 (c) Chapel 4.00

(i) TypeScript 21.50 (i) Hack 26.99 (v) F# 4.25

(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 4.59

(i) PHP 29.30 (v) Erlang 36.71 (i) TypeScript 4.69

(v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01

(i) Lua 45.98 (i) TypeScript 46.20 (i) Perl 6.62

(i) Jruby 46.54 (i) Ruby 59.34 (i) Lua 6.72

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 6, June 2024 ||

 | DOI: 10.15680/IJIRCCE.2023.1206032 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 8626

(i) Ruby 69.91 (i) Perl 65.79 (v) Erlang 7.20

(i) Python 75.88 (i) Python 71.90 (i) Dart 8.64

(i) Perl 79.58 (i) Lua 82.91 (i) Jruby 19.84

efficient? By looking solely at the overall results, shown in Table 4, we can see that the top 5 most energy efficient

languages keep their rank when they are sorted by execution time and with very small differences in both energy and

time values. This does not come as a surprise, since in 9 out of 10 benchmark problems, the fastest and most energy

efficient programming language was one of the top 3. Additionally, it is common knowledge that these top 3 language

(C,C++, and Rust) are known to be heavily optimized and efficient for execution performance, as our data also shows.

Thus, as time influences energy, we had hypothesized that these languages would also produce efficient energy

consumptions as they have a large advantage in one of the variables influencing energy, even if they consumed more

power on average.

Nevertheless, if we look at the remaining languages in

Table 4, we can see that only 4 languages maintain the same energy and time rank (O Caml, Haskel, Racket, and

Python), while the remainder are completely shuffled. Additionally, looking at individual benchmarks we see many

cases where there is a different order for energy and time.

Moreover, the tables in Results - A. Data Tables in the appendix also allows us to understand that this question does not

have a concrete and ultimate answer. Although the most energy efficient language in each benchmark is almost always

the fastest one, the fact is that there is no language which is consistently better than the others. This allows us to

conclude that the situation on which a language is going to be used is a core aspect to determine if that language is the

most energy efficient option. For example, in the regex-redux benchmark, which manipulates strings using regular

expressions, interpreted languages seem to be an energy efficient choice (TypeScript, JavaScript and PHP, all

interpreted, are in the top 5), although they tend to be not very energy efficient in other scenarios. Thus, the answer for

RQ2 is: No, a faster language is not always the most energy efficient.

Memory impact on energy
How does memory usage affect the memory’s energy consumption? There are two main possible scenarios which may

influence this energy consumption: continuous memory usage and peak memory usage. With the data we have

collected, we will try to answer the latter scenario.

The top 5 languages, which can also be seen in Table 4, which needed the least amount of memory space (on average)

to execute the solutions were: Pascal (66Mb), Go (69Mb), C (77Mb), Fortran (82Mb), and C++ (88Mb); these are all

compiled languages. The bottom 5 languages were: J Ruby (1309Mb), Dart (570Mb), Erlang (475Mb), Lua (444Mb),

and Perl (437Mb); of these, only Erlang is not an interpreted language.

On average, the compiled languages needed 125Mb, the virtual machine languages needed 285Mb, and the interpreted

needed 426Mb. If sorted by their programming paradigm, the imperative languages needed 116Mb, the object oriented

249Mb, the functional 251Mb, and finally the scripting needed 421Mb.

Additionally, the top 5 languages which consumed the last amount of DRAM energy consumption (average) were: C

(5J), Rust (6J), C++ (8J), Ada (10J), and Java (11J); of these, only Java is not a compiled language. The bottom 5

languages were: Lua (430J), J Ruby (383J), Python (356J), Perl (327J), and Ruby (295J); all are interpreted languages.

On average, the compiled languages consumed 14J, the virtual machine languages consumed 52J, and the interpreted

languages consumed 236J.

Looking at the visual data from Figures 4-6, and the right most figures under Results - C. Energy and Time Graphs in

the appendix, one can quickly see that there does not seem to be a consistent correlation between the DRAM energy

consumption and the peak memory usage. To verify this, we first tested both the DRAM energy consumption and peak

memory usage for normality using the Shapiro-Wilk [32] test. As the data is not normally distributed, we calculated the

Spearman [38] rank-order correlation coefficient. The result was a Spearman ρ value equal to 0.2091, meaning it is

between no linear relationship (ρ = 0) and a weak uphill positive relationship (ρ= 0.3).

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 6, June 2024 ||

 | DOI: 10.15680/IJIRCCE.2023.1206032 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 8627

While we did expect the possibility of little correlation between the DRAM’s energy consumption and peak memory

usage, we were surprised that the relationship is almost non-existent. Thus, answering the first part of RQ3, this

indicates that the DRAM’s energy consumption has very little to do with how much memory is saved at a given point,

but possibly more of how it is used.

As future work, we wish to measure the continuous memory usage, or in other words the total amount of memory used

over time, to understand if this is what leads to higher DRAM energy consumption. We expect there to be a stronger

relationship between these two as factors such as garbage collection, cache usage, register location, and the data

management efficiency of each language (read/write) to have a strong impact on the energy consumption.

Energy vs. Time vs. Memory
There many are situations where a software engineer has to choose a particular software language to implement his

algorithm according to some functional or non-functional requirements. For instance, if he is developing software for

wearables, it is important to choose a language and apply energy-aware techniques that help to save battery. Another

example is the implementation of tasks that run in background. In this case, execution time may not be a main concern,

and they may take longer than the ones related to the user interaction.

With the fourth research question RQ4, we try to understand if it is possible to automatically decide what is the best

programming language when considering the energy consumption, execution time, and peak memory usage needed by

their programs, globally and individually. In other words, if there is a “best” programming languages for all three

characteristics, or if not, which are the best in each given scenario.

To this end, we present in Table 5 a comparison of three characteristics of the languages: energy consumption,

execution time, and peak memory usage. To be able to compare the languages using more than one characteristic at a

time we use a multi-objective optimization algorithm to sort these languages. This is also called Pareto optimization. It

is necessary to use such an algorithm because in some case it may happen that no solution simultaneously optimizes all

objectives. For our example, energy, time, and memory are the optimization objectives. In these cases, a dominant

solution does not exist, but each solution is a set, in our case, of software languages. Here, the solution is called the

Pareto optimal.

We used this technique, and in particular the software available at, to calculate different rankings for the analyzed

software languages. In Table 5 we present four multi objective rankings: time & memory, energy & time, energy &

memory, and energy & time, & memory. For each ranking, each line represents a Pareto optimal set, that is, a set

containing the languages that are equivalent to each other for the underlying objectives. In other words, each line is a

single rank or position. A single software language in a position signifies that the language was clearly the best for the

analyzed characteristics. Multiple languages in a line imply that a tie occurred, as they are essentially similar; yet

ultimately, the languages lean slightly towards one of the objectives over the other as a slight trade-off.

The most common performance characteristics of software languages used to evaluate and choose them are execution

time and memory usage. If we consider these two characteristics in our evaluation, C, Pascal, and Go are equivalent.

However, if we consider energy and time, C is the best solution since it is dominant in both single objectives. If we

prefer energy and memory, C and Pascal constitute the Pareto optimal set. Finally, analyzing all three characteristics,

this scenario is very similar as for time and memory.

It is interesting to see that, when considering energy and time, the sets are usually reduced to one element. This means,

that it is possible to actually decide which is the best language. This happens possibly because there is a mathematical

relation between energy and time and thus they are usually tight together, thus being common that a language is

dominant in both objectives at the same time. However, there are cases where this is not true. For instance, for Pascal

and Chapel it is not possible to decide which one is the best as Pascal is better in energy and memory use, but worse in

execution time. In these situations, the developer needs to intervene and decide which is the most important aspect to be

able to decide for one language.

It is also interesting to note that, when considering memory use, languages such as Pascal tend to go up in the ranking.

Although this is natural, it is a difficult analysis to perform without information such as the one we present in this

paper.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 6, June 2024 ||

 | DOI: 10.15680/IJIRCCE.2023.1206032 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 8628

Given the information presented in Table 5 we can try to answer RQ4: Can we automatically decide what is the best

software language considering energy, time, and memory usage? If the developer is only concerned with execution

time and energy consumption, then yes, it is almost always possible to choose the best language. Unfortunately, if

memory is also a concern, it is no longer possible to automatically decide for a single language. In all the other rankings

most positions are composed by a set of Pareto optimal languages, that is, languages which are equivalent given the

underlying characteristics. In these cases, the developer will need to make a decision and take into consideration which

are the most important characteristics in each particular scenario, while also considering any functional /nonfunctional

requirements necessary for the development of the application. Still, the information we provide in this paper is quite

important to help group languages by equivalence when considering the different objectives. For the best of our

knowledge, this is the first time such work is presented. Note that we provide the information of each individual

characteristic in Table 4 so the developer can actually understand each particular set (we do not show such information

in Table 5 to avoid cluttering the paper with to many tables with numbers).

VII. RELATED WORK

The work presented in this paper extends the work presented by, where the energy consumption monitoring approach

for different programming languages was introduced. The main focus of was the methodology and the comparison of

the CPU-based energy efficiency in 10 of the 28 languages. We made a wider and more in-depth analysis, since in

addition to including all languages, we also included the DRAM-based energy consumption and peak memory usage

values, and presented a discussion on how energy, time and energy relate in software, and on different languages

divided by type and paradigm.

The CLBG benchmark solutions have already been used for validation purpose by several research works. Among

other examples, CLGB was used to study dynamic behavior of non-Java JVM languages, to analyze dynamic scripting

languages and compiler optimizations, or even to benchmark a JIT compiler for PHP. At the best of our knowledge,

CLGB was only used once for energy consumption analysis. In, the authors used the provided Haskell

implementations, among other benchmarks, to analyze the energy efficiency of Hakell programs from strictness and

concurrency perspectives, while also analyzing the energy influence of small implementation changes. The authors of

also used CLBG to compare JavaScript, Java, and C++ in an Android setting.

While several works have shown indications that a more time efficient approach does not always lead to the most

energy efficient solution], these results were not the intended focus nor main contribution, but more of a side

observation per se. We focused on trying to understand and directly answer this question of how energy efficiency and

time relate.

Nevertheless, the energy efficiency in software problem has been growing in interest in the past few years. In fact,

studies have emerged with different goals and in different areas, with the common vision of understanding how

development aspects affect the energy consumption in diversified software systems. For instance, for mobile

applications, there are works focused on analyzing the energy efficiency of code blocks, or just monitoring how energy

consumption evolves over time. Other studies aimed at a more extensive energy consumption analysis, by comparing

the energy efficiency of similar programs in specific usage scenarios or by providing conclusions on the energy impact

Table 5. Pareto optimal sets for different combination of objectives.

 Time & Memory Energy & Time Energy & Memory Energy & Time & Memory

C • Pascal • Go C C • Pascal C • Pascal • Go

Rust • C++ • Fortran Rust Rust • C++ • Fortran • Go Rust • C++ • Fortran

Ada C++ Ada Ada

Java • Chapel • Lisp • O caml Ada Java • Chapel • Lisp Java • Chapel • Lisp • O caml

Haskell • C# Java O Caml • Swift • Haskell Swift • Haskell • C#

Swift • PHP Pascal • Chapel C# • PHP Dart • F# • Racket • Hack •
PHP

F# • Racket • Hack • Python Lisp • O caml • Go Dart • F# • Racket • Hack • Python JavaScript • Ruby • Python

JavaScript • Ruby Fortran • Haskell • C# JavaScript • Ruby TypeScript • Erlang

Dart • TypeScript • Erlang Swift TypeScript Lua • J Ruby • Perl
J Ruby • Perl Dart • F# Erlang • Lua • Perl

Lua JavaScript J Ruby

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 6, June 2024 ||

 | DOI: 10.15680/IJIRCCE.2023.1206032 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 8629

of different implementation decisions. Several other works have shown that several factors, such as different design

patterns, coding practices and data structures actually have a significant influence in the software’s energy efficiency.

VIII. LIMITATIONS & FUTURE SCOPE

1. Benchmark Limitations:

Representativeness: The benchmarks used to measure energy efficiency may not be representative of real-world

applications. They often focus on specific tasks which may not cover the wide range of operations performed by

diverse software.

Standardization: Lack of standard benchmarks and methodologies can lead to inconsistent results across different

studies, making it difficult to compare findings.

2. Hardware Variability:

Diverse Architectures: Different hardware architectures (e.g., CPUs, GPUs, ARM processors) can significantly impact

the energy consumption of programs, making it hard to generalize results.

Measurement Tools: Variability in the precision and accuracy of energy measurement tools and techniques can

introduce errors and affect the reliability of the results.

3. Language and Compiler Optimizations:

Version Differences: Different versions of programming languages and their compilers/interpreters can have varying

levels of optimization, impacting energy efficiency.

Optimization Levels: Compiler optimization settings can drastically change the energy consumption of programs, and

comparing across different levels of optimization can be challenging.

4. Workload Characteristics:

Task Specificity: Some languages might perform exceptionally well for specific types of tasks but poorly for others,

and studies might not cover all possible types of workloads.

Concurrency and Parallelism: The impact of concurrent and parallel execution on energy efficiency is complex and not

always straightforward to measure or compare across languages.

5. Environmental Factors:

System Load: Background processes and system load can influence energy measurements, adding noise to the data.

External Conditions: Environmental factors like temperature and power supply stability can affect the energy

consumption of hardware, introducing variability in measurements.

Future Scope
1. Standardization of Benchmarks and Measurement Techniques:

Development of Standard Benchmarks: Creating widely accepted and comprehensive benchmark suites that cover

a diverse range of applications can improve the consistency and comparability of studies.

Unified Measurement Protocols: Establishing standard protocols for measuring energy consumption, including

hardware specifications and environmental conditions, can reduce variability in results.

2. Cross-Platform Studies:

Multi-Architecture Analysis: Conducting studies across various hardware architectures and platforms to

understand how language efficiency scales and varies with different hardware.

Mobile and Embedded Systems: Extending research to include energy efficiency on mobile and embedded

systems, which have different constraints and usage patterns compared to traditional desktop and server

environments.

3. Advanced Compiler and Runtime Optimizations:

Energy-Aware Compilers: Developing compilers that optimize code specifically for energy efficiency, possibly

through machine learning techniques that predict energy consumption patterns.

Runtime Adaptations: Investigating adaptive runtime systems that dynamically optimize for energy efficiency based on

current workload and system state.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 6, June 2024 ||

 | DOI: 10.15680/IJIRCCE.2023.1206032 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 8630

IX. CONCLUSION

In this paper, we first present an analysis and comparison of the energy efficiency of 27 well-known software languages

from the popular software repository The Computer Language Benchmarks Game. We are able to show which were the

most energy efficient software languages, execution types, and paradigms across 10 different benchmark problems.

Through also measuring the execution time and peak memory usage, we were able to relate both to energy to

understand not only how memory usage affects energy consumption, but also how time and energy relate. This allowed

us to understand if a faster language is always the most energy efficient. As we saw, this is not always the case.

Finally, as often times developers have limited resources and may be concerned with more than one efficiency

characteristic we calculated which were the best/worst languages according to a combination of the previous three

characteristics: Energy & Time, Energy & Peak Memory, Time & Peak Memory, and Energy & Time & Peak Memory.

Our work helps contribute another stepping stone in bringing more information to developers to allow them to become

more energy-aware when programming.

REFERENCES

1. Sarah Abdulsalam, Ziliang Zong, Qijun Gu, and Meikang Qiu. 2015. Using the Greenup, Powerup, and Speedup metrics

to evaluate software energy efficiency. In Proc. of the 6th Int. Green and Sustainable Computing Conf. IEEE, 1–8.

2. Shaiful Alam Chowdhury and Abram Hindle. 2016. GreenOracle: estimating software energy consumption with energy

measurement corpora. In Proceedings of the 13th International Conference on Mining Software Repositories, MSR 2016,

Austin, TX, USA, May 14-22, 2016. 49–60.

3. Thomas D Cook and Donald T Campbell. 1979. Quasi-experimentation: design & analysis issues for field settings.

Houghton Mifflin.

4. Marco Couto, Paulo Borba, Jácome Cunha, João P. Fernandes, Rui Pereira, and João Saraiva. 2017. Products go Green:

Worst-Case Energy Consumption in Software Product Lines. (2017).

5. Marco Couto, Tiago Carção, Jácome Cunha, João Paulo Fernandes, and João Saraiva. 2014. Detecting Anomalous

Energy Consumption in Android Applications. In Programming Languages: 18th Brazilian Symposium, SBLP 2014,

Maceio, Brazil, October 2-3, 2014. Proceedings, Fernando Magno Quintão Pereira (Ed.). 77–91.

6. Marco Couto, Rui Pereira, Francisco Ribeiro, Rui Rua, and João Saraiva. 2017. Towards a Green Ranking for

Programming Languages. In Programming Languages: 21st Brazilian Symposium, SBLP 2017, Fortaleza, Brazil,

September, 2017.

7. K. Deb, M. Mohan, and S Mishra. 2005. Evaluating the ε-domination based multiobjective evolutionary algorithm for a

quick computation of Pareto-optimal solutions. Evolutionary Computation Journal 13, 4 (2005), 501–525.

8. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.

Trans. Evol. Comp 6, 2 (2002), 182–197.

9. Martin Dimitrov, Carl Strickland, Seung-Woo Kim, Karthik Kumar, and Kshitij Doshi. 2015. Intel® Power Governor.

https://software.intel.com/ en-us/articles/intel-power-governor. (2015). Accessed: 2015-10-12.

10. F. Ding, F. Xia, W. Zhang, X. Zhao, and C. Ma. 2011. Monitoring Energy

11. Consumption of Smartphones. In Internet of Things (iThings/CPSCom), 2011 Int. Conf. on and 4th Int. Conf. on Cyber,

Physical and Social Computing. 610–613.

12. Isaac Gouy. The Computer Language Benchmarks Game. http:

13. //benchmarksgame.alioth.debian.org/

14. Marcus Hähnel, Björn Döbel, Marcus Völp, and Hermann Härtig. 2012. Measuring energy consumption for short code

paths using RAPL. SIGMETRICS Performance Evaluation Review 40, 3 (2012), 13–17.

15. Shuai Hao, Ding Li, William G. J. Halfond, and Ramesh Govindan. 2013. Estimating Mobile Application Energy

Consumption Using Program

16. Analysis. In Proc. of the 2013 Int. Conf. on Software Engineering (ICSE ’13). IEEE Press, 92–101.

17. Samir Hasan, Zachary King, Munawar Hafiz, Mohammed Sayagh, Bram Adams, and Abram Hindle. 2016. Energy

profiles of java collections classes. In Proc. of the 38th Int. Conf. on Software Engineering. ACM, 225–236.

18. Andrei Homescu and Alex Şuhan. 2011. HappyJIT: A Tracing JIT Compiler for PHP. SIGPLAN Not. 47, 2 (Oct. 2011),

25–36.

19. R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, and P. Ammann. 2015. EcoDroid: An Approach for Energy-based

Ranking of Android Apps. In

20. Proc. of 4th Int. Workshop on Green and Sustainable Software (GREENS ’15). IEEE Press, 8–14.

21. Ding Li and William G. J. Halfond. 2014. An Investigation Into EnergySaving Programming Practices for Android

Smartphone App Development. In Proceedings of the 3rd International Workshop on Green and Sustainable Software

(GREENS).

http://www.ijircce.com/
https://software.intel.com/en-us/articles/intel-power-governor
https://software.intel.com/en-us/articles/intel-power-governor
https://software.intel.com/en-us/articles/intel-power-governor
http://benchmarksgame.alioth.debian.org/
http://benchmarksgame.alioth.debian.org/

 8.379

	I. INTRODUCTION
	II. LITERATURE REVIEW
	III. PROBLEM DEFINITION
	IV. OBJECTIVE & SCOPE
	V. RESEARCH METHODOLOGY
	Measuring Energy in Software Languages
	VII. RELATED WORK
	Future Scope

	IX. CONCLUSION
	REFERENCES

