

e-ISSN: 2320-9801 | p-ISSN: 2320-9798



INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH

IN COMPUTER & COMMUNICATION ENGINEERING

Volume 11, Issue 5, May 2023

INTERNATIONAL STANDARD SERIAL NUMBER INDIA

0

Impact Factor: 8.379

9940 572 462

6381 907 438

🛛 🖂 ijircce@gmail.com

n 🛛 🙋 www.ijircce.com

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| <u>www.ijircce.com</u> | |Impact Factor: 8.379 |

|| Volume 11, Issue 5, May 2023 ||

| DOI: 10.15680/IJIRCCE.2023.1105287 |

Book Recommendation System Using Machine Learning

Prof.B.R.Devhare, Shubham Karande, Avinash Waghmare, Vaishnavi Gulavani Computer Department, Savitribai Phule Pune University, Pune, India Students of Computer Department, Savitribai Phule Pune University, Pune, India

ABSTRACT: Recommendation systems are designed to help online platform users manage large volumes of information and provide them with a personalized experience. This is achieved by suggesting items of interest to users based on their explicit and implicit preferences. There have been growing interests in the area of recommendation systems using machine learning algorithms. Because there is a large number of explicit and implicit characteristics. Which can be used to estimate user preferences, requires scalable and precise algorithms with a system with High availability and scalability? Apache Spark is an open source distributed platform. To process big data, obtaining good speed and scalability and Suitable for iterative self-learning algorithms.

KEYWORDS: Collaborative Filtering, Machine Learning, Recommendation.

I.INTRODUCTION

Consider that this paper's title refers to the recommendation system, which is a component of the data mining technique. Although different technologies are used in recommendation systems, they can be divided into two groups: systems for content-based and collaborative filtering Content-based systems look at the properties of

Articles and suggest articles that the user has previously liked. By creating a user profile based on the properties of the elements that users enjoy and using the profile to calculate how similar they are to the new elements, they model a user's taste. Items that are more similar to the user's profile are the ones we suggest. The properties of the articles, on the other hand, are ignored by recommender systems, which instead base their recommendations on the preferences of the community. They suggest features that user with similar preferences and tastes have favored in the past. If two users share many characteristics, they are said to be similar.

II.RELATED WORK

They suggest various strategies based on matrix factorization (MF). Second, a method for MF neighbor correction is presented that effectively combines the global perspective of MF with the localized property of neighbor-based approaches. In the experimentation section, we first discuss some implementation issues and offer suggestions for efficient MF parameter optimization. Then, we demonstrate that, in terms of prediction accuracy and/or training time, the proposed scalable methods outperform those already in use. Last but not least, we discuss a few experiments carried out with the Movie Lens and Jester data sets [1].

In this job we identify every unique property of implicit feedback dataset. We propose treating the data as evidence of positive and negative choice associated with very different confidence levels. This results in a factor model specifically marked to justify implicit feedback. They also propose a scalable optimization routine that scales linearly with data size. These algorithms are well used in the recommendation system for television programs. It compares well to well-tuned implementations of other eminent methods. Furthermore, we propose a new way of explaining the recommendations of this factor model [2].

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| <u>www.ijircce.com</u> | |Impact Factor: 8.379 |

|| Volume 11, Issue 5, May 2023 ||

| DOI: 10.15680/IJIRCCE.2023.1105287 |

Different types of input data are used in recommender systems, which typically take the form of a matrix with one dimension representing users and the other representing items of interest. High-quality explicit feedback, which includes users' explicit input regarding their interest in products, is the most convenient type of data. TiVo users, on the other hand, use thumbs-up and thumbs-down buttons to indicate their preferences for TV shows, and Netflix, for example, collects star ratings for movies. Ratings are the name we give to explicit user feedback. Since every user is likely to have rated only a small portion of the items that are available, explicit feedback typically consists of a sparse matrix [3].

People naturally develop a sense of how things relate to each other, some of which are based on how they look. Two pairs of jeans, for example, might be viewed as competing with one another, while a matching shirt and a pair of jeans might be viewed as complementing one another. Buying clothes and interacting with others are just a few examples of the many choices people make influenced by this information. This human sense of relationships between objects based on appearance is our goal here. Instead of relying on fine-grained modeling of user annotations, we use a scalable approach that aims to uncover human perceptions of the visual relationships within the largest dataset possible. This is presented as a large-scale dataset for training and evaluating a network inference problem based on graphs of related images. In addition to a plethora of other applications [4], the system that we create is able to suggest which clothes and accessories will complement one another (and which will not) [4].

A method for inferring networks of products that are both substitutable and complementary is developed here. This is formulated as a supervised link prediction task in which the semantics of substitutes and complements are learned from product-associated data. The text of product reviews serves as our primary data source, but our approach also makes use of features like ratings, specifications, prices, and brands. From a methodological standpoint, we develop topic models that can be trained to discover topics from text on their own and successfully predict and explain such relationships. We use the Amazon product catalog, a huge dataset with 9 million products, 237 million links, and 144 million reviews, to test our system experimentally [5].

III.OPEN ISSUES

E-books have gained popularity due to their portability and low cost with the rapid development of social computing technologies and the popularity of electronic reading devices and online reading platforms. Customers have shifted their reading and book purchases toward digital channels as a result of the variety of reading methods that are available. Readers now have a difficult time choosing their favorite books due to the rise of serialized novels. It becomes harder to improve the accuracy of book recommendations, especially for online serialized novels.

• Low accuracy was found in the current state.

• Use of a static dataset

IV.PROPOSED METHODOLOGY

• Based on our research, we would like to propose a collaborative filtering-based book recommendation system. To achieve high accuracy and eliminate the cold-start issue in the recommendation system, this system would combine content-based recommendation with collaborative filtering, first locating the user's point of interest and then making recommendations to the user based on implicit and explicit feedback.

• This system includes a specific book recommendation for inexperienced users.

• Combining content-based and collaborative filtering is a common solution from this research perspective, according to some well-known studies.

• The most recent proposals for frameworks for content-based collaboration filtering are based on explicit feedback that includes both favorable and DE favorable favorable samples.

• For instance, only the preferred samples are provided in a manner that is implicitly favorable. Data on mobility ought to be fed together, even though it is not practical to treat all books that have not been read negatively. In these explicit comments for Frames, pseudo-negative drawings are required for user information and books. **System Architecture**

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| <u>www.ijircce.com</u> | |Impact Factor: 8.379 |

|| Volume 11, Issue 5, May 2023 ||

| DOI: 10.15680/IJIRCCE.2023.1105287 |

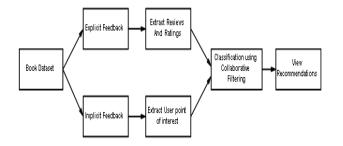


Figure 1. System Architecture

IV. RESULT AND DISCUSSION

We compared the proposed book recommendation accuracy on number of samples and show the result graphically. Let see the following graph and table shows the book recommendation accuracy result based on machine learning technique.

	Existing	Proposed System
	system	
Precision	68.45	77.70
Recall	79.44	65.64
F-Measure	72.11	74.31
Accuracy	80.29	88.26

V.CONCLUSION

Using a collaborative filtering algorithm, we develop a book recommendation in this work. We developed the System with-in the spark framework in order to enhance the algorithm's accuracy. Additionally, we evaluate how well it performs in various configurations. The experiment's outcomes revealed an efficient execution time and a respectable average quadratic error as the recommendation model's output. The experiment also demonstrated that it is carried out on a cluster and also surpasses at a cost that is reasonable for the data set that was used.

V.ACKNOWLEDGMENT

Express my true sense of gratitude, sincere and sincere gratitude to my guide to the project Prof.B.R.Devhare for his precious collaboration and guidance that he gave us during our research, to inspire us and provide us with all the laboratory facilities, this it allowed us to carry out this research work in a very simple and practical way. We would also like to express our thanks to our coordinator, Prof.R.B.Lagdive, HOD. M.B.Wagh and Principle Dr.N.J.Uke and all our friends who, knowingly or unknowingly, helped us during our hard work.

REFERENCES

- 1. G. Tak'acs, I. Pil'aszy, B. N'emeth, and D. Tikk, "Scalable collaborative filtering approaches for large recommender systems," Journal of machine learning research, vol. 10, no. Mar, pp. 623–656, 2009.
- 2. Y. Hu, Y. Koren, and C. Volinsky, "Collaborative filtering for implicit feedback datasets," in Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on. Ieee, 2008, pp. 263–272.
- 3. Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems," Computer, vol. 42,

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| <u>www.ijircce.com</u> | |Impact Factor: 8.379 |

|| Volume 11, Issue 5, May 2023 ||

| DOI: 10.15680/IJIRCCE.2023.1105287 |

- 4. no. 8, 2009.
- J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, "Image-based recommendations on styles and substitutes," in Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2015, pp. 43–52.
- 6. J. McAuley, R. Pandey, and J. Leskovec, "Inferring networks of substitutable and complementary products," in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2015, pp. 785–794.
- 7. M. Li, H. Wu, and H. Zhang, "Matrix factorization for personalized recommendation with implicit feedback and temporal information in social ecommerce networks," IEEE Access, vol. 7, pp. 141268–141276, 2019.
- 8. H. Li, S. Zhang, Y. Hu, J. Shi, and Z.-M. Zhong, "Research of social recommendation based on social tag and trust relation," Cluster Comput., vol. 21, no. 1, pp. 933–943, Mar. 2018.
- 9. J. Li, C. Chen, H. Chen, and C. Tong, "Towards context-aware social recommendation via individual trust," Knowl.-Based Syst., vol. 127, pp. 58–66, Jul. 2017.
- 10. S. Ahmadian, M. Meghdadi, and M. Afsharchi, "Incorporating reliable virtual ratings into social recommendation systems," Appl. Intell., vol. 48, no. 11, pp. 4448–4469, Nov. 2018.
- 11. H. Li, X. Diao, J. Cao, and Q. Zheng, "Collaborative filtering recommendation based on all-weighted matrix factorization and fast optimization," IEEE Access, vol. 6, pp. 25248–25260, 2018.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH

IN COMPUTER & COMMUNICATION ENGINEERING

📋 9940 572 462 应 6381 907 438 🖂 ijircce@gmail.com

www.ijircce.com