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ABSTRACT: In the past few years this AI business became rather hot. But like with everything, there are problems 

that come along with it too; privacy violation, security, and model fairness. Differential privacy however, as a 

promising mathematical model for solving these problems has the following advantages which make it rather a useful 

tool. So differential privacy is extensively used in AI; to the authors’ knowledge no prior work has studied whether 

differential privacy mechanisms are usable to address these problems, nor what mechanisms’ features enable this. This 

paper shows that differential privacy is more than privacy preservation. It can also be used to improve security, 

stabilize learning, provide fair models, and apply constraints on composition constrained to areas in AI. Many research 
directions in the development of new improvements of respective methods and algorithms as regular machine learning, 

distributed machine learning, deep learning, and multi agent systems have been been explored for decades that latter 

part of this article will briefly discuss and point new opportunities of differential privacy approaches utilization. 

 

KEYWORDS: Data Privacy, Artificial Intelligence, Federated Learning, Differential Privacy, Privacy-preserving AI, 

Secure Intelligent Applications, Decentralized Learning, Privacy-enhancing Technologies, Data Security, Machine 

Learning Privacy. 

 

I. INTRODUCTION 

 

1.1 Background of the Study 

Artificial Intelligence (AI) is one of today’s most discussed subjects. For Distributed Control Systems, distributed 
machine learning can be used by Google for mobile clientele, and by Multia-Agent Systems, for example. However, 

along the way of growing dependence on data, numerous new challenges emerged, including privacy violation, 

security, model stability, model fairness and communication overheads. Adversarial samples are some of the methods 

utilised by AI sabotage, perturbations which can cause machine learning to make false decisions. Multi agent systems 

might unfortunately get some wrong information that may come from some other agents with wrong intent. Hence, 

many of the researchers had worked on investigating how novel as well as previous security and privacy tools can be 

used to solve these newly arising issues. Of the above said tools, the one is differential privacy. One of the most widely 

applied privacy preservation models is differential privacy, which offers that the addition of an individual’s information 

to the database has almost zero effect on the result. Using the following example, Figure 1 below shows a simple 

differential privacy framework for any exploration of the concept. Since we have two datasets which are almost the 

same except for one record, and a query function f, which gives us access to the datasets, this allows us to increase the 
dataset size. Mail obtained in the course of proving this could not be published back to the datasets until another way to 

query them yields the same outputs; this would be required in order for us to verify differential privacy constraint. If 

this is the case, for any query range, an adversary cannot establish any link from the query output to either of the two 

neighboring datasets and hence this one different record is secure. Consequently, the differential privacy addresses the 

hitherto issue that even possessing the knowledge concerning all the records in a database except that of a given 

unknown person, the adversary cannot estimate the information of that unknown person. In reality, differential privacy 

mechanisms are not only serving for privacy community, for the AI community, or even for many private companies, 

such as Apple, Uber & Google. The principal of differential privacy is that one adds noise to the output in some 

calibrated way, and when Dwork et al. showed how differential privacy mechanisms can actually prevent overfitting 

when applied to test data in Machine Learning, it opened up a whole new area for new problems in Artificial 

Intelligence to solve beyond maintenance of privacy – think about Google for mobile users. But with increasing 

dependence on data, AI poses several new problems privacy violations, security vulnerabilities, model instability, 
model fairness and communication overheads. Adversarial samples are just one of the tactics that can be used to goof’s 

machine learning models, which can give incorrect results. Malicious agents in a multi agent system may return false 
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information. Due to this reason, many researchers have been trying out the new and existing security and privacy tools 

to address these new emerging problems. One of these tools is differential privacy. The privacy preservation model we 

use, which is called differential privacy, provides a guarantee that whether an individual is included in a dataset has 

very little impact on the final aggregate output. I use the following example to illustrate a basic differential privacy 

framework in Fig. 1. Let us have two almost identical datasets where difference is in one record and access to the 

datasets is available through the query function f. We say differential privacy is satisfied if we can find a mechanism 

which can query both datasets and give the same outputs in the output space. The one different record, in that scenario, 

is safe because an adversary cannot associate the query outputs with either of the two neighbouring datasets. In this 

way, the differential privacy guarantee is that an adversary knowing the information of all of the other records in a 

dataset, with the sole exception of one unknown individual, could not determine the information of this unknown 

record. Recently, interest in differential privacy mechanisms has not only piqued the interest of the privacy community 
and the AI community, but many private companies such as Apple, Uber and Google have as well. Introducing 

calibrated randomization to the aggregate output is the key idea of differential privacy. Dwork et al. proved that 

applying differential privacy mechanisms to machine learning test data can help prevent overfitting learning algorithms, 

which launched a new direction away from simply preserving privacy, and on instead to solving some emerging 

problems in mobile clientele. Nevertheless, with ever growing dependence on data, several new challenges have 

cropped up including violation of privacy, security, model stability, model fairness and overheads of communication. 

As only some of the methods of AI sabotage, adversarial samples are manipulations that can lead to incorrect decisions 

by machine learning. Unfortunately, multi-agent systems may get some wrong information which may have been 

provided by some other agents with wrong intents. Therefore, investigations were made by many researchers to use 

novel and previous security and privacy tools to solve these new arising issues. Differential privacy is one among the 

above said tools. Differential privacy is one of the most applied privacy preservation models which promises that the 
addition of an individual’s information to the database has very little effect on the result. Figure 1 below shows a 

simple differential privacy framework for any exploration of the concept using the following example. Suppose we 

have two datasets which are nearly similar, but are only different in one record and suppose that there is a query 

function f that gives access to the datasets. This is provided that there exists a querying mechanism that can work on 

both datasets and produce the same outputs, then, we can conclude that differential privacy constraint has been met. In 

that case, an adversary cannot link the query outputs to either of the two neighboring datasets; hence the one different 

record is secure. Therefore, the differential privacy ensures that regardless of the remaining records in a database other 

than the record of a given unknown person, the adversary cannot approximate the information of that unknown record. 

In fact, it is not only necessary for the privacy community, the AI community, but also many private companies, 

including Apple, Uber and Google to pay attention to differential privacy mechanisms. The principal of differential 

privacy is to added noise to the output in a calibrated way. When Dwork et al. demonstrated that providing differential 

privacy mechanisms to test data in Machine Learning could actually help avert overfitting in learning algorithms, it 
introduced a novel scope beyond mere privacy retention to a new area of solving new issues in Artificial Intelligence in 

google for mobile users. However, as AI becomes more and more reliant on data, several new problems have emerged, 

such as privacy violations, security issues, model instability, model fairness and communication overheads. As just a 

few of the tactics used to derail AI, adversarial samples can fool machine learning models, leading to incorrect results. 

Multi-agent systems may receive false information from malicious agents. As a result, many researchers have been 

exploring new and existing security and privacy tools to tackle these new emerging problems. Differential privacy is 

one of these tools. Differential privacy is a prevalent privacy preservation model which guarantees whether an 

individual’s information is included in a dataset has little impact on the aggregate output. Fig. 1 illustrates a basic 

differential privacy framework using the following example. Consider two datasets that are almost identical but differ 

in only one record and that access to the datasets is provided via a query function f. If we can find a mechanism that can 

query both datasets and obtain the same outputs, we can claim that differential privacy is satisfied. In that scenario, an 
adversary cannot associate the query outputs with either of the two neighbouring datasets, so the one different record is 

safe. Hence, the differential privacy guarantees that, even if an adversary knows all the other records in a dataset except 

for one unknown individual, they still cannot infer the information of that unknown record. Interest in differential 

privacy mechanisms not only ranges from the privacy community to the AI community, it has also attracted the 

attention of many private companies, such as Apple,1 Uber and Google. The key idea of differential privacy is to 

introduce calibrated randomization to the aggregate output. When Dwork et al.  showed that applying differential 

privacy mechanisms to test data in machine learning could prevent overfitting of learning algorithms, it launched a new 

direction beyond simple privacy preservation to one that solves emerging problems in AI. We conclude with two 

examples to demonstrate how these new properties can be used. 

 

1.2 AI Areas 

There is no such overpowering area discipline in AI as there is in the physical sciences. The broad vision of artificial 
intelligence and its variety – created by science and businesses. For instance, consider the view of the Turing Test. 

When programming a computer that needs to act like a human, the computer must have the following capabilities: Can 
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understand natural language in a fashion that it can effectively interact with a human, can keep information that it 

knows or it hears in a knowledge base, and can use the content to answer questions and/or conclude other information 

with reasoning. 

 

Capture new environments and identify and generalize through visual learning, identify through computer vision, and 

operate through robotics. 

 

Based on this birds-eye view, we roughly categorize three major technical fields in AI: Emphasis was placed on 

machine learning, deep learning, and multi agent systems. However, the two of them can be processed in a multi agent 

system, while the others of them can be implemented in machine learning and/or deep learning. According to the 

application, the AI area is as follows: computer vision, natural language processing ‘NLP’ etc., robotics. We 
additionally observe that if you emphasize the moment when deep learning was a group of stochastic machine learning 

algorithms designed in a neural network setting, then it has extended into something much greater like a big field of its 

study with numerous new paradigms and techniques such as GANs or ResNet and so on, and therefore we consider it 

separately. 

 

The purpose of this paper is to document how the differential privacy mechanism can solve those new emerging 

problems in the technical fields: Slicing parts of a system into another space: machine learning, deep learning, and 

multi deputy systems. Since application like robot, NPL and computer vision has used the technology known as 

machine, deep learning and multi agent than we have not given on separate section on these applications. 

 

1.3 Problem Statement  
In today’s world that is moving towards digital transformation we see a huge increase in use of artificial intelligence 

systems in various methodologies at various organizational levels. But with the more growing reliance on data-based 

AI, there are also growing concerns pertaining to issues related to data privacy and protection. Secondly, all the data 

being collected gets gathered in one place, which mothers the risk of leakage, unauthorized legislating, and any other 

form of violation of individual privacy which can be threatening in implementation of the centralized AI systems. 

 

As seen above, therefore, the need to handle big data while preserving its anonymity, leads to the development of 

privacy preserving technologies. For these challenges, there are two promising solutions which are Federated Learning 

(FL) and Differential Privacy (DP). Rather than many participating models uploading their raw data to a central server, 

Federated Learning enables the computation of model updates locally, while privacy is preserved. Differential Privacy 

goes one step further by adding some controlled noise to the data, and promises that you can't tell the difference 

between a particular data and another, to some extent, in the overall dataset. 
 

But using FL and DP in building such models comes with its own problems in form of preserving accuracy 

proportionate overhead and preserving privacy. Also, there is no generalized policymaking strategy that incorporates 

each method so that data protection is guaranteed, and the functionality of AI technology is also properly managed. 

 

This research has the following objectives: In this work, we attempt to look at Federated Learning by reviewing the 

developments done on it, investigate Differential Privacy for safeguarding data privacy in Artificial Intelligence 

systems, and understand how the development of secure intelligent applications can also protect user data while 

maximizing efficiency. 

 

1.4 Research Objectives 
The research objectives for this study are: 

1. This work examines Improvement and Development of Federated Learning and Differential Privacy. 

2. We aim to explore their capacity to offer data privacy in Artificial Intelligence systems. 

3. To explore the difficulties necessary with their implementation. 

 

1.5 Differential Privacy in AI Areas 

Calibrated randomization gives other forms of AI algorithms an advantage. Randomization as follows deduces some 

properties. 

1. Preserving privacy: Which is exactly why differential privacy was invented in the first place. Differential privacy 

will be able to mask the individual in aggregate information, thereby balancing the privacy of participants in a dataset. 

2. Stability: The guarantee underlying differential privacy mechanisms is that the probability of any result from a 

learning algorithm is the same no matter what it does to any record in the training data. Here we define the property for 
which relations exist between a learning algorithm and a capability to generalize. 
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3. Security: Hostility by participants in a system is of concern to security. We find that differential privacy mechanisms 

can prevent the adverse effects of adversarial participants in AI tasks. It can do so on the above property to guarantee 

security in AI system. 

4. Fairness:  The only concept relating fairness to the algorithmically generated outputs is if the sensitive features such 

as and race have no impact on the given algorithm’s outputs. 

gender. Fairness can be preserved in a learning model (centralized training) using differential privacy, by making a 

fresh sample of the full population. 

5. Composition: It turns out DP mechanisms can allow anyone following DP to add a new algorithm that satisfies DP. 

So, we know this property as composition, which is controlled by its readiness budget. In AI the composition allows to 

control the manipulator, number of steps of as well as communication loads and the like. 

 

II. LITERATURE REVIEW 

 

2.1 Overview of Federated Learning  

FL's basic concept is to train an ML/AI model while not disclosing the training data to anybody (i.e., neither to the 

person centrally coordinating the learning process nor to any one of the distributed parties that possess or control data 

that can be used to collaboratively train/test those who own the data to train/test the model). 

 

Fig. 1 is provided to explain FL with 𝐾 clients. Conversely, in FL, the model knowledge orchestration is traditionally 

carried out via the federated averaging (FedAvg). Because of its relationship with the structure of the underlying 

architecture, FL has drawn a lot of attention in privacy preserving data analytics. 

 
Google and Apple as key companies use FL capabilities to train ML/AI models. It is also emerging in transportation – 

autonomous vehicles – and in Industry 4.0. We show in this paper that there are already several frameworks providing 

FL implementations that are already running, namely PySyft and Leaf and Paddle FL which allow for collaborative 

training/testing of the model among distributed data owners without revealing the raw data to any (or even the 

coordinating server) party. 

 

FL with 𝐾 clients is shown in Fig. 1. For FL, federated averaging (FedAvg) is often used to do model knowledge 

orchestration. FL is gaining much attention in privacy preserving data analytics using the underlying architecture 

because of its promising aspects. 

 
Two major companies Google and Apple use FL capabilities for training ML/AI models. Moreover, it is being used in 

manufacturing (e.g., industry 4.0) as well as in transportation (e.g., self-driving cars). Further, several FL 

implementation-based frameworks already exist. There are some frameworks for PySyft, Leaf and Paddle FL which is 

showing the data to anyone involved in the process, including the central coordinating server, and allows distributed 

parties that own or control data to collaboratively train/test the model using their data. 

 

To explain FL with 𝐾 clients, Fig. 1 is provided. In FL, the model knowledge orchestration is performed typically via 

federated averaging abbreviated as FedAvg. FL has attracted much attention in privacy-preserving data analytics 

because of its potential based on the structure of the underlying architecture. 

 

FL capabilities are utilized by Google and Apple as key companies to train ML/AI models. Moreover, it is emerging in 
transportation – such as autonomous vehicles – as well as in Industry 4.0. This paper will show that there are already 

several implementation-based frameworks that are currently running FL. Such frameworks are PySyft, Leaf and Paddle 

FL without exposing the raw data to any participant, including the coordinating server, enabling the collaborative 

training/testing of the model between distributed data owners/custodians. 

 

Fig. 1 illustrates FL with 𝐾 clients. In FL, the model knowledge orchestration is done usually through federated 

averaging (FedAvg). Due to the promising aspects of the underlying architecture, FL is gaining much attention in 

privacy-preserving data analytics. 

 

Google and Apple are two major companies that utilize FL capabilities in training ML/AI models. Besides, it is gaining 

attention in transportation (e.g., self-driving cars) and Industry 4.0. Several implementation-based frameworks are 
already supporting FL. Some of these frameworks include PySyft, Leaf and Paddle FL. Based on different 

requirements, such as the feature space distribution, different FL configurations can be employed. These configurations 

include:  

 Horizontal federated learning 

 Vertical federated learning 
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 Federated transfer learning. 

 

In the case of when all the distributed clients have the same set of features but different sample, horizontal federated 

learning is used. For example, when distributed clients have different subsets of features in the same data samples we 

use vertical federation; and when we have different datasets and different features in each data sample, we use fed 

transfer learning. One of the most significant barriers in FL is a communication bottleneck, however. When clients 

have to connect on the Internet, such communications are likely to be expensive and to occur often, unreliably. 

Secondly, because the distributed clients have low computational power, the process of transferring model training 

between the distributed clients is slow. According to FL, a client needs to have the entire model of any given client. In 

other words, FL clients need not be resource sparse devices as, for example, a large voluminous deep learning model 

requires a lot of computing to be trained, therefore, an FL client requires enough computational capacity. Furthermore, 
in other than a typical environment with good communication links, FL use would be limited by the need to sustain 

competent communications with the server. Moreover, in real world applications nodes or clients in the distributed 

environment might be subject to dissimilar failures which results in the impact of the generalization of the global 

model. Hence FL is made unreliable by its exposure to an enormous number of clients. Additionally, a series of other 

forms of compression, including gradient compression, model broadcast compression and local computation reduction 

are also being trial to keep a reasonable FL efficiency rate. Additionally, we show that the model’s convergence is 

dependent on the unbalanced and nonidentically independently distributed data partitioning across unreliable devices. 

Besides such data communication and data convergence challenges, data leakage presents one challenge to FL. Some 

of the parameters show how to exchange information between clients and the server. Many security and privacy threats 

arise from malicious clients or servers: as the backdoor attacks here show, it is easy for the malicious to give 

themselves backdoors through which they can sneak and learn about others’ data. Additionally, remaining channel can 
be utilised by other privacy invading types of attacks like membership inference. Unfortunately, FL comes with 

unintended privacy loss which most previous studies have tried to overcome using third party approaches, such as fully 

homomorphic encryption and differential privacy. However, performance of such approaches is always limited by the 

limitations of those approaches such as high computational complexity, etc. It is difficult to apply the border definition 

criteria in a distributed environment where the utilization of resource-apocope undertaker devices is considered. 

 

 
 

Figure 1: Federated Learning with K-Clients 
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Figure 2: Federated Learning Framework  

 

2.2. Federated Learning Architectures 

Federated Learning is based on a federated architecture: The training is defined and conducted by a central server for 

the different clients. Locally in each client device a model is trained on the private dataset and only the gradients or 
model parameters are sent to the central server; and updates from all the clients are collected to improve the world 

model and shared back to all client devices for further local update of the model. The training is coordinated amongst 

the clients under the supervision of a central server that sends the training signal, distributes the portion of data to be 

learned and fuses the learned updates received from the clients into a global model, after which the client performs a 

model on its local dataset and shares back the computed gradients or model parameters with the central server.  Clients 

send updates of the local model that are aggregated on this server to refine the global model, which is subsequently 

distributed to the clients for further local training.  Clients perform tasks with the help of the central server which 

organizes the training, launches it, assigns tasks to the client devices, and then gathers their updates to form a global 

model. private data set and only the computed gradients or model parameters are sent to the central server. It collects 

the updates of all the clients to improve the global model and shares it with all clients for further local updates to the 

model. Here the training is coordinated among the clients with the help of a central server who sends the training 
signal, assigns the portions of data to be learned and combines the received updates from the clients to form a global 

model’s a model on its local dataset and then shares only the computed gradients or model parameters with the central 

server. This server aggregates the updates from all clients to refine the global model, which is subsequently 

redistributed to the clients for further local training. The architecture can be detailed as follows: 

 

[1]. Central Server: The central server orchestrates the training process among the client devices, initiating the training, 

allocating tasks, and consolidating updates from the clients to generate a global model. This model, including the 

acquired knowledge from all the connected client devices, is the basis for the following round of training: how to make 

your machine learning model better. 

 

[2]. Client Devices: Client devices also perform local updates in their own datasets. I think that for this local training 
only a part of the data that the client device has are used. After local training on client devices, the client updates are 

communicated with the central server. Some of these updates would be updates with the model parameter as you update 

the model’s parameter during the local training processes. 
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Figure 3: Federated Learning Architectures 

 

2.3 Advantages of Federated Learning 

1. Enhanced Privacy and Security: With federated learning the data is processed on the client's device without 

moving it back and forth to a server. All this is done so that unauthorized access to user’s data is prevented and chances 

of account compromise are minimized. 

2. Reduced Bandwidth Usage: One of the characteristics of federated learning is that the central server just needs to 
receive model updates from the devices, which greatly reduces the amount of the data Fed. That is corresponding to a 

large communication cost reduction comparing to traditional FL. 

3. Personalized Models: Federated learning allows forming a cooperative to create models that could be fitting per the 

different user data. This allows a set of localized operations to outperform a general centralized system for devices. 

4. Scalability: Federated learning can also be hugely scalable since it can be done over several devices by 

decentralizing the training process. It can handle the mass of data churned out by multiple devices, all untethered to a 

really big central hub. 

5. Improved Learning from Diverse Data: Federated learning, by the way, offers the same benefit by learning from a 

wide variety of devices and contexts, so that conditions or behaviors do not affect the models. 

 

2.4. Challenges in federated learning at scale 
Indeed, as we stated earlier, FL framework does look Privacy friendly by its core design, but there are still certain 

challenges that have to be addressed, particularly those related to the data security and inference attacks. The risks are 

tackled and elaborately discussed in this work for better reliability of the optimized privacy mechanisms related FL 

systems. 

A. Inference Attacks: In contrast, the attacks based on inference take advantage of the shared updated model to gain 

insights of the training data. If we are to add some amount of noise with which differential privacy does to the updates, 

it would make difficult for the attacker to identify what information is specific to an individual and there will be these 

attacks thwarted. 

B. Model Poisoning: Two classes of model poisoning attacks are malicious data or model injection, affecting the 

accuracy of the global model; Anomaly detection algorithms, Byzantine tolerant gradient descent, and secure 

aggregation protocol are solutions which deal with the impact of such attacks. 

C. Data Heterogeneity: Data for FL are oftentimes in a different form or distribution and sometimes contain sensitive 
data. The high variance makes it hard for us to build a non-ambiguous, accurate global model. Seniority and 

heterogeneity of data and allows in data preprocessing. On the one hand, based on transfer learning, federated learning 

transfers knowledge of a pre-trained global model to learn new difference from the original data sources. 
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D. Communication Efficiency: FL's interactivity makes it less scalable; it leads to a huge communication overhead 

mainly in large model and large dataset. Because communication cost is a large training cost for distributed machine 

learning, gradient compression and traditionally good methods such as FedOpt supply the key piece to make FL 

feasible and scalable. 

 

2.5 Privacy-Preserving Techniques in Federated Learning 

A. Differential Privacy (DP): Differential Privacy (DP) is a theoretical way of being able to release dataset 

information/anonymizing gradients in a way such that information cannot so easily be inferred about the data. Due to 

the promise that these updates allow adversaries to learn the exact parameters of a model, this technique is critically 

important. 

Likewise, in DP setting the Laplace mechanism that is the most commonly used performs model updates adding 
Laplace noise. The amount of noise added is determined by the sensitivity of the function and the privacy budget (ε), 

which controls the trade-off between privacy and utility: f′ = f + Lap(Δf/ϵ) 

And here Δf denotes data sensitivity and ϵ represents privacy budget. 

B. Homomorphic Encryption (HE): Additive Homomorphic Encryption allows one to perform levels on ciphertext 

about the levels of plaintext: 

E(a) + E(b) = E(a + b) 

E(a) ∗ E(b) = E(a ∗ b) 

In FL, this property is used so that gradient encrypted gradients received from clients can be summed over without the 

data being disclosed. 

C. Federated Optimization (FedOpt): Gradient Descent and Secure Aggregation techniques in Federated 

Optimization (FedOpt) are the central solutions of FL to increase the efficiency of communication and minimize the 
data leakage. SCA is adopted by FedOpt to enhance performance of FL, in addition to adopting homomorphic 

encryption for separate studying of differential privacy.  

D. Sparse Compression Algorithm (SCA): SCA is the method for overcoming the communication complexity of FL 

as a significant part of FedOpt. SCA compresses gradients and only send along updates that are most important, while 

the rest of the updates can be eliminated, which reduced the communication overhead. This method decreases the flow 

of information that moves from the server and the client’s impression, thereby it improves the coverage.  

E. Secure Gradient Aggregation: secure gradient aggregation among the master server and the devices utilizing FL 

for privacy and security is delivered by FedOpt. Data is encrypted using homomorphic encryption before being sent 

and aggregated such that only the aggregation of update parameters is enabled without losing either the data’s 

confidentiality or integrity. 

 

III. Differential Privacy: Ensuring Confidentiality 

 

Because there is no raw data sharing among the participating parties and the raw data are always under the control of 

data custodians in SL and SFL, the first privacy is provided by default in their vanilla form. This setup works very 

nicely when all of the participating parties are somewhat malicious but not fully so. For membership inference attacks 

and model memorization attacks where adversaries can gain more capability than their curious state, the default privacy 

is not reasonable, and other mechanisms should be leveraged.  

 

More mechanisms used in literature include secure multiparty computation, homomorphic encryption and differential 

privacy (DP). A privacy preservation model similar to the zero-knowledge concept but with multiple parties 

contributing their inputs acting as inputs to the function without any of the other parties learning the inputs of the other 
parties is secure multiparty computation. While helpful for cases where the security levels are very low and do come 

with an inherent efficiency cost, especially communication. Homomorphic encryption evaluates functions on the 

encrypted data without decryption, such that the results of the evaluation on the encrypted data repeatedly compute on 

the encrypted data. That is, as a result the above said computations can still be performed by an untrusted third-party 

constituent while maintaining the privacy of the underlying input data/model. However, this computational overhead 

comes at a cost, and gives rise to critical challenges. The process of introducing calibrated noise into data or models, so 

the expected utility of the data is not lost but the adversaries do not have the capability to access private information is 

known as the differential privacy. We start by reiterating a key idea in the provision of differential privacy highlighted 

above: adding noise and the proportional utility loss that comes with it. After comparing both approaches and 

techniques side by side, which include computational efficiency and flexible scalability such approaches, it would be 

possible to note one of the approaches with the most preferred adoption towards achieving data privacy being 

‘Differential privacy.’ Features that give it its due significance are, besides, its post processing freedom, its data 
confidentiality, and collective differential privacy. In the next section, we add the formality of defining differential 

privacy. 
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3.1 Differential privacy and its application 
Differential privacy (DP) is a privacy definition which requires high privacy for what we want to count as private data. 

Formally, K provides differential privacy for 𝛿 ≥ 0 if for any adjacent datasets 𝐷1, 𝐷2 (i.e., 𝐷2 is within unity of 𝐷1) 

and for all 𝑆 ∈ Range(K), Pr[K(𝐷1) ∈ 𝑆] ≤ The concept introduces some flexibility to the definition of 𝜀 — if /𝜀 is kept 

sufficiently low (in the range of 9/0.1), then no more than an unacceptable amount of information about K should leak 

to anyone Since 𝛿, as with /𝜀, provides the definition with some flexibility and predicts the probability of failure in 

advance. However, 𝛿 should be maintained at extremely low values (e.g.,1/(100 ∗ 𝑁), 𝑁: We demonstrate (the practical 

utility of the considered methods in terms of the effect of the database size) that the probability of violating privacy is 
extremely low (1%). The global differential privacy is adding noise over the output results/queries which produces 

differentially private query/ML outputs. Then you add noise back into the raw data to create datasets under another 

system called local differential privacy. DP has been applied with Deep learning applications in DCML for entities like 

the healthcare sector because of its stringent privacy assurance. In addition, the DP plan guarantees that deep learning is 

sufficiently protected against privacy invasions like membership and model memorization attack, and privacy 

preserving techniques from global differential privacy providing a strong privacy guarantee. A randomized algorithm K 

is (𝜀, 𝛿) private for 𝛿 ≥ 0 if for all adjacent dataset 𝐷1 and 𝐷2 (𝐷1 and 𝐷2 differ on at most one element) and all 𝑆 ⊆ 

Range(K) Pr [K (𝐷1) ∈ 𝑆] ≤ exp(𝜀) × Pr [K (𝐷2) ∈ 𝑆] + 𝛿, with parameter 𝜀, called privacy budget, measuring how 

much privacy is leaked when a function or algorithm (K) satisfies differential privacy. As the definition says, the 

rationale of fixing the value of 𝜀 low (0.1 to 9) ensures that K does not leak an unreasonable amount of information, but 

allows some flexibility in this with 𝛿 (calculated pedigree of failure). However, 𝛿 should be maintained at extremely 

low values (e.g.,1/ (100 ∗ 𝑁), 𝑁: to ensure a meager chance (1%) of privacy violation, the assignment of the 

components should be based on the number of instances in the database. Global differential privacy is applying noise 

over output results/queries to produce differentially private query/ML outputs. Local differential privacy is applying 

noise on input data to create differentially private datasets. For applications in DCML, such as healthcare, due to the 

strong privacy guarantee the use of DP has been adopted. Additionally, DP allows deep learning to offer a robust 

resistance to privacy attacks like membership inference and model memorization attacks. It is applicable to global 

differential privacy-based approaches and that contains a high privacy requirement for what is wanted to count as 

private data. K gives differential privacy for 𝛿 ≥ 0, if for all the adjacent datasets 𝐷1 and 𝐷2 (𝐷2 is a neighbor of 𝐷1, 

i.e., the difference between 𝐷2 and 𝐷1 is at most unity) and for every 𝑆 ⊆ Range(K), Pr[K (𝐷1) ∈ 𝑆] ≤ exp(According 

to this definition, the value of 𝜀 has to be kept sufficiently low (for example, from 0.1 to 9) to ensure that K leaks an 

unacceptable amount of information As with 𝜀, 𝛿 gives the definition a certain amount of flexibility and offers a 

calculated likelihood of failure in advance. However, 𝛿 should be maintained at extremely low values (e.g.,1/(100 ∗ 𝑁), 

𝑁: practical utility of the considered methods in terms of the impact of the number of instances in the database) to 

ensure that it is extremely unlikely (at a 1% probability) to violate privacy. Adding noise over the output results/queries 

produces differentially private query/ML outputs is known as the global differential privacy. Adding noise to the raw 
data which creates datasets under a system known as local differential privacy. Because of the stringent privacy 

assurance, DP has been applied with Deep learning applications in DCML for entities such as the healthcare sector. 

Furthermore, the DP plan ensures that deep learning can ensure maximum protection from privacy invasion such as 

membership and model memorization attack. Privacy preserving techniques that originate from global differential 

privacy and that constitutes a strong privacy guarantee . A randomized algorithm, K provides differential privacy for 𝛿 

≥ 0 if for all adjacent datasets 𝐷1 and 𝐷2 (where 𝐷2 differs from 𝐷1 on at most one element) and all 𝑆 ⊆ Range(K), Pr 

[K (𝐷1) ∈ 𝑆] ≤ exp(𝜀) × Pr [K (𝐷2) ∈ 𝑆] + 𝛿, where 𝜀 is called privacy budget that provides a measurement to the level 

of privacy leak from a certain function or algorithm (K), which satisfies differential privacy. As the definition states, 

the value of 𝜀 should be maintained at a lower level (e.g., 0.1 to 9) to make sure that K does not leak an unacceptable 

level of information. 𝛿 provides a certain relaxation to the definition by providing a precalculated chance of failure. 

However, 𝛿 should be maintained at extremely low values (e.g.,1/(100 ∗ 𝑁), 𝑁: the number of instances in the 

database) to guarantee there is a meager chance (1%) of privacy violation. Applying noise over output results/queries to 

generate differentially private query/ML outputs is called global differential privacy. Applying noise on input data to 

generate differentially private datasets is called local differential privacy. Due to the strong privacy guarantee, DP has 

been applied with deep learning applications in DCML for areas such as healthcare. Moreover, with DP, deep learning 

can guarantee a robust resistance to privacy attacks such as membership inference attacks and model memorization 

attacks. The differentially private solutions for deep learning can be categorized into two types: 

 

1.  Approaches based on global differential privacy  
2. Local differential privacy methods. Additionally, figure 4 below presents current architectural architectures of the 

differentially private deep learning. The global differential privacy will be implemented, that is the noise will be 

applied per training algorithm. As a concrete example, it computes calibrated noise over the gradients of the model at 

each step of stochastic gradient descent. Thus, local differential privacy introduces noise to the data being transmitted 

between two entities. For example, the extra layer of stochasticity added to the output of a convolutional layer, with 
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edge values computed through a fully connected layer of a CNN, is noise. The most used method for deep learning has 

been global differential privacy as the noise introduced while learning is less than the local differential privacy (which 

introduces highly conservative noise to meet the DP criteria). Additionally, the global differential privacy allows for 

more degrees of freedom to control the noise density while training a deep learning model. On the other hand, local 

differential privacy, a local privacy model, provides higher privacy because of higher noise standard deviation as 

compared with the global differential privacy. It is shown that under both differential privacy types, solutions have 

nearly optimal accuracy; solutions with stronger privacy guarantee are given under local differential privacy.  

 

 
 

Figure 4: Different configurations of differentially private deep learning under global and local settings. DP: 

Differential Privacy/Differentially Private, DL: Deep Learning 

 

3.2 Differential Privacy in federated learning 

At the clients, add differentially private noise to the parameter updates and add differentially private noise to the sum of 

all parameter updates at the server. The meaning of the above equation expresses the term differentially private 
parameter update at the server model as they injected differentially private noise to the parameter updates at the clients 

and differentially private noise to the sum of all parameter updates at the server as in the form above. shows the 

meaning of the term differentially private parameter update at the server model expressed by the equation. Initially 

private noise to the parameter updates at the clients and adding differentially private noise to the sum of all parameter 

updates at the server. The first approach adds calibrated noise to the local weights at the client sides and the second 

approach adds calibrated noise to the global weight updates at the server side. The server model is the second form 

above, where the parameter update is differentially private, and is the equation for that. updates into a single value 

parameter updates at the clients and adding differentially private noise to the sum of all parameter updates at the server. 

In the first approach, some noise is injected in to the local weight at the client-side while in the second approach the 

noise is injected in to the global weight updates at the server-side. The second form above shows the meaning of the 

term differentially private parameter update at the server model expressed by the equation initially private noise to the 

parameter updates at the clients and adding differentially private noise to the sum of all parameter updates at the server. 
In the first approach, calibrated noise is added to local weight (at the client-sides), whereas in the second approach, 

calibrated noise is added to global weight updates (at the server-side). The equation represents the differentially private 

parameter update at the server model (for the second form above). From the above delineation, we extrapolate the client 

𝑘’s parameter update Δ𝑤𝑘, 𝑡 at time instants 𝑡, 𝐾 is the number of clients, S is clipping threshold or sensitivity and N is 

noise to 𝑆. In the first form above, the method is done in a like manner regarding the noise addition mechanism. The 
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noise is injected at client model aid, reducing 𝐾 to 1 and the weights of the current model to be updated based on the 

green dotted line also show aid behavior however with addition of this aid change. 

 

IV. METHODOLOGICAL APPROACH 

 

Given the fact that FL is a type of machine learning, it has the same environments where it happens as machine 

learning. However, since the specifics of FL necessitate a change of the machine learning pipeline accordingly. In the 

approach of methodological design, we accurately set forward the workflow of FL with the machine learning workflow 

in this section. Sherpa.ai FL complies with these methodological guidelines to ensure these best practices are correctly 

used in generating Edge AI whose aim is to protect data confidentiality. We distinguish two scenarios in FL:  
In contrast, everything in Simulations Setup is known about the generating distribution of the data.  

 

A simulation of a FL scenario can be used to mimic this federated data distribution for use case assessment.  

Though we accentuate the specificities of a simulated FL experiment, our guidelines are oriented towards the real FL 

scenario. 

 

In addition, it is assumed that the problem definition is correct; that is, the input data features and output variable are 

specified in advance and the clients know what is being asked of them. We show in FIGURE 4 the graphical 

representation of the workflow of a FL experiment under this hypothesis, and explain in subsections below. 

 

 
 

Figure 5: Flowchart of a FL Experiment  

 

4.1. Data collection 
Interestingly, the data is owned by the clients as in any real FL scenario. Therefore, data is collected locally for each 

client site and there is scope and design for a distributed system from the start. In particular, in a strict FL scenario, the 

server does not even know the actual data. If a global validation test dataset is used there is even a possibility for the 

server to gain a minor prior knowledge about the problem. The most general assumption for cryptographic protocols is 

that we don’t have any information at the server. 

Remark: Data collection becomes data retrieval, from a database, as we will later see in outlining a FL scenario in 

scientific research. For check, during data preparation is the distribution of data among clients emulated. 

 

4.2. Data preparation: Two works are formulated in data preparation including data partitioning: for data partition 

into training, evaluation and test data. Data pre-processing: for pre-processing of training data to improve its quality. 

 

4.2.1 Data partition: In the case of FLs, the process of partitioning data into training, evaluation and test datasets is 
very similar to the process used in centrally based machine learning (with the difference that it is applied for each 
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client's data stored locally). In other words, the data in each client dataset is separated by choosing randomly, without 

replacement, in which the data are used respectively as a training set, an evaluation set, and a test set. 

Remark: For the research scenario in scientific FL it is possible to have a global evaluation and test datasets if the 

former extracts these datasets prior to distributing the remaining data as local training datasets to the clients. 

Additionally, it may be better in terms of the simulation to just combine both global and local evaluation and test 

datasets using the two approaches. 

 

4.2.2. Data preprocessing: Because the data in FL is highly distributed and private, it demands far more preprocessing 

skills than other tasks of similar nature. The problem becomes how to preprocess distributed data over a set of clients, 

without knowing the distribution of the data. 

 
Bringing preprocessing techniques, built on top of centralized data, to federated data is a laborious process. Where it is 

of techniques that map onto statistics of data distributions (e.g. normalization), at times it mirrors to be difficult to build 

up strong aggregations of the statistics. However, when using intervals in discretization for example, all possible values 

must fit within a global interval. Moreover, there exist complex forms of the stable adaption, i.e., the feature selection, 

that is why, in the distributed environment, it is better to take advantage of the preprocessors. Regarding distributed 

data preprocessing we can look at the other developed techniques for distribution preprocessing. However, to respect 

data privacy standards in use in many modern societies, most of these methods need to be adapted. MapReduce is an 

example of a distributed model which adheres to privacy limitations. Therefore, appropriate interactive big data 

preprocessing techniques can be adjusted to a FL scenario subject to limitations imposed by data. 

 

Remark: Under FL, centralized preprocessing techniques can be offered once before data is split between clients. It is 
viable in addition to being not advisable, though, for purpose of practical experimenting.5.4.3. Model selection. In 

addition to the choice of the learning model (as in any other centralized approach), this step implies the choice of a 

parameter aggregation mechanism applied at the server site. 

 

4.3. Model training 

The iterative FL training process is divided into rounds of learning, and each round consists of: 

1. The local training dataset was used to train the local models. 

2. the local parameters will be shared to the server in case of maintaining the local parameters. 

3. The operator and on the server computes average of local models’ parameters. 

4. synchronization of the local models with the received global model. 

 

4.4. Model evaluation 
For FL models, the overall FL model was assessed using the evaluation datasets to assign each client. Thus, the local 

performances of each client are communicated to the server, which aggregates these performances to obtain global 

performance measures. As the amount of data, a client may have been different, the absolute metrics on the client’s 

confusion matrix are used, while other evaluation metrics are computed on the server. 

 

Remark 1: Finally, in the simulation of FL, we can use a global evaluation set to show the performance of the 

aggregated model. In addition, cross validation methodologies can be used to assess the model criterion on all folds 

during the process, whereby partitions are fixed in the beginning of the process and the whole process is repeated for 

each iteration of the cohort. 

 

Remark 2: This is not the main goal of FL, and yet, it might prove useful to see how well the local models do before 
aggregating them, to gain insight into how much customization is brought by the local model for each particular client. 

 

V. CASE STUDIES AND APPLICATIONS: REAL-WORLD APPLICATIONS OF COMBINED FEDERATED 

LEARNING (FL) AND DIFFERENTIAL PRIVACY (DP) IN VARIOUS INDUSTRIES 

 

1. Healthcare Industry: 

Case Study: FL with DP was used by a group of hospitals towards creating a common model to forecast patient 

readmission rate. The training was performed on each hospital own data, and they only communicated the gradients. 

DP mechanisms were used whenever possible to ensure the updates provided did not disclose patient information. 

Application: Therefore, the idea served to enable a number of hospitals to improve the level of predictive accuracy, 

without encroaching on the rights of patients, so thereby the situation of patients was improved, as well as a propensity 

for lower readmission rates. 
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2. Finance Industry: 

Case Study: However, one of the FL mentioned users namely FP, combined algorithm with the DP to create a fraud 

detection model in its collaboration with a group of banks. The machine fed transaction data from every bank, and all 

sent their encrypted gradients to a central server. To this end, DP was used to add noise on the gradient so that it was 

not possible to observe particularity of the individual transactions. 

Application: This was then used in the combined approach to improve the model to detect fraud across the banks while 

being unable to violate the existing privacy laws. 

 

3. Retail Sector: 

Case Study: FL by DP was used to understand how a customer behaves across a number of an outlets by a large chain 

store. By locally training stores’ own a recommendation system model in such a way that identity of customers and 
purchase details were not revealed when aggregated, DP allows for improved privacy representations that strengthen 

personal data protection. 

Application: This innovation resulted in better stocking, better target customers, and better personalization in 

recommendations leading to a growth in sales and customer satisfaction without abridge in the customer’s right to 

privacy. 

 

4. Smart Cities: 

Case Study: Several of these smart cities-built traffic management models with FP using DP. Then each city used 

sensor data for individual cars and trained the model locally with DP to protect each car's data. 

Application: The better, more efficient, and less privacy invasive traffic management benefited the cities in achieving 

the goal of minimizing traffic jams and thus improving citizens’ travel time. 

 

5. Telecommunications: 

Case Study: FL with DP has been applied by a number of telecommunications firms that have used it to improve the 

network optimization models in use in the telecommunications network. The model was trained with network usage 

data from different local networks, and DP was used to mask the identities of the users and their use habits, both by the 

two firms. 

Application: This enabled better customer experience and network quality, and protected customer data more. 

 

5.1 Comparative Analysis of Privacy and Performance Outcomes 

1. Privacy Outcomes: 

Enhanced Data Protection: The resulting integration of FL and DP provides a significant improvement in the data 

privacy protection: no raw data is ever transmitted from local devices and all data transfer is anonymous. 
Regulatory Compliance: We see that at the moment when one integrates DP into their system, they would be able to 

fulfill regulatory needs such as GDPR and HIPAA and therefore obstruct or reduce data leakage and ensuing fines. 

 

2. Performance Outcomes: 

Model Accuracy: The future work in this case includes pushing the limits of FL to improving the model, with variance 

of a certain amount of accuracy loss due to the model operating on noisy data. But as improvements are made in the 

innovations of DP, such techniques still reduce the impact of DP. 

 

3. Computational Overhead: Applying FL with DP can incur additional computational and communications measures 

that arise due to the need of more complex processes in order to assure privacy. But these costs are typically 

outweighed by strong privacy benefits, and also for forming highly reliable models collaboratively. 

 

4. Balancing Privacy and Performance: 

Optimal Noise Levels: Deciding on how much noise DP should require is another challenge of privacy and 

performance. If External Noise is high, the classifier’s performance reduces significantly, but if it is very low, it can 

result in very little privacy. 

 

5. Adaptive Techniques: It also explores new methods to constitute the adaptive privacy budgets and specific FL as a 

means of finding an optimal polygon point along the tradeoff surface space where perfect performance and privacy 

balance. 
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VI. RESULTS AND DISCUSSION 

 

In comparison to DP for different industries we show through essays strong promise in bringing in Sociotechnical 

Systems approaches. The use of the approach in healthcare application has improved the accuracy of information used 

in the models of readmissions without sacrificing on patients’ data. In finance sector the fight against fraud in every 

bank has been promoted through sharing of data securely. And big data and analytics have helped control traffic flow in 

smart cities to make effective decisions based on anonymized vehicle data in retail, and give better customer 

recommendations without compromising on the privacy of the customers. In the telecommunications context, use of the 

approach has let to optimized network with protected user data. 

 
FL, alongside DP, brings data to a de facto level of privacy nobody can take away, and respects all the data’s GDPRs, 

HIPPA, and so on. As such, the record from an individual is kept from being exposed by the measures of 

anonymization. The accuracy of FL and DP stays high in a performance context, but there is a slight effect that is 

integrated into the noise we make to allow for privacy. However, the computational overhead is reasonable and the 

advantage of privacy achieved is reasonable enough to offset the cost. 

 

6.1 Discussions 

Combined FL and DP satisfy major privacy needs and permit collaborative ML among multiple establishments. There 

are, however, tradeoffs between privacy and performance, however, many of the complexity caused by this is dealt 

with with the progress in adaptive privacy techniques. Now, more than ever, this has become critical to industries who 

work with sensitive data, where a mechanism exists to engage, coalesce and properly utilize such data. The possibility 
of further development of the technologies and covering new fields, along with the achievement of better outcomes, 

will also contribute to the continued importance of FL and DP combined in order to solve real life tasks. 

 

VII. FUTURE DIRECTIONS 

 

A. Security Innovations 

As a result of the following, it lays down novel cryptographic mechanisms along with differential privacy tools to 

improve FL’s protection against advanced threats. Improvements of the current system’s scalability should be 

investigated in subsequent research. To test the effectiveness of these measures of security to assure safety in various 

implementations.  
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B. Federated learning algorithms designed to scale to massively distributed datasets: In light of this, we propose 

scalable FL frameworks that can achieve FL with many clients and large gradients from practical systems of FL based 

on the number of clients and larger gradients. Datasets and optimized for edge and cloud computing without being 

disrupted. This includes emerging markers of distributed computing and the increase in the efficiency of the 

communication protocol processes. 

 

C.  Integration with Emerging Technologies  

Of applying FL in areas like healthcare, financial services and smart city which requires privacy preserving data 

analysis. Consequently, solutions that are more flexible for FL to satisfy the constraints of these domains will facilitate 

the adoption and use. 

 
D. Emergent Systems and Technologies Integrated with Emerging Technologies: FL is also applied and used with 

5G and IoT, and blockchain technologies to leverage the power of the latter for enhancing privacy and security and 

enhancing performance. This would be useful in deploying FL in complex and dynamic systems to deliver good 

solutions for todays’ AI problems. 

 

VIII. CONCLUSION 

 

FL is seen as a new -wave paradigm of AI, which comes with a host of advantages with respect to preserving user’s 

privacy, and confidentiality of the data. Unlike the conventional centralized AI models where the bulk of the data is 

centralized and gathered on a central point, FL runs in a distributed environment. In this framework there are several 

devices, such as smartphones or IoT devices, jointly training the model autonomously whilst exchanging raw data with 
one another. A novel framework to implement AI with these new changes has some interesting unique benefits. First of 

all, FL greatly enhances privacy protection. Data is stored on individual specific devices so inexperienced hackers on 

the system are no chance. In order to increase the privacy of the features which are used in the training process, 

techniques such as Differential Privacy and Homomorphic Encryption are utilized on the dataset. They either introduce 

noise into the computation, or do computation in a way that is private, where an individual’s privacy is a critical 

requirement it is never compromised. 

 

Secondly, FL corrects some fundamental issues involved in the optimization and solving of the communicational tasks. 

In the case of the traditional centralized AI approach, the problem is big data has to be sent from devices to the 

centralized servers. Whereas unlike FL, there is significantly better communication overhead using local training across 

different devices. Rather than communicating the staggering amount of data, model updates carry much less traffic, 

improving overall performance. In a nutshell, one can state that it may be that Federated Learning is useful for AI 
because it allows to solve the critical flaws of the centralized method and increase the capability of communication. By 

taking advantage of combining privacy preserving methods and additional research, FL can be used to redesign 

development and deployment of AI so as to catalyze emancipatory AI systems as support for people and institutions. 
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