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ABSTRACT: Image synthesis is the process of generating new images from the ground up, frequently utilizing 

preexisting data or models. By definition, super-resolution methods produce supplementary image content and features 

that are not present in the original input in order to reconstruct a high-resolution image from a low-resolution source. 

Surpassing the performance attained with high-resolution images is a challenge when training or analyzing models with 

low-resolution images. It is not always easy to obtain a higher-resolution image. Recognizing and identifying objects in 

low-resolution images is a challenging task. As a result, it is imperative to develop a method that simultaneously 

enhances the resolution of the low-resolution image and enhances its quality. Generative Adversarial Networks (GANs) 

and other generative models are increasingly acknowledged for their capacity to accurately replicate high-resolution 

counterparts. This article provides a performance comparison of DCGAN and Wasserstein GAN for image synthesis 

via image super resolution. The experimental endeavor employs the Set5 image data set. Wasserstein GAN outperforms 

DCGAN in terms of PSNR, SSIM, and VIF parameters. 

 

KEYWORDS: Generative Adversarial Networks,DCGAN, WassersteinGAN Realistic Image Synthesis, Super-
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I. INTRODUCTION 

 

Image synthesis refers to the creation of new images from the ground up, often using existing data or models. Super-

resolution approaches, by definition, generate supplementary image content and features absent in the original input to 

reconstruct a high-resolution image from a low-resolution source [1].  

 

Each image has an own array of attributes, including the hue and intricacies of an object or scene, encoded inside its 

individual pixels. In fact, there is a considerable amount of additional information that may be included inside each 

pixel of an image. It is evident that each pixel has a distinct tint. Nonetheless, the red, green, and blue (often 

abbreviated as R, G, and B) constituents of a pixel dictate its hue. By mixing these three fundamental colors at varying 

intensities, we can represent the visible spectrum of each pixel.  

 

The level of detail in an image is closely correlated with its resolution. A better quality image has more pixels and more 

detail, whereas a lower resolution image contains fewer pixels and less detail. The pixel count in a picture is one metric 

of its quality; however, the data contained inside those pixels is also a significant factor. A higher resolution image has 

a greater amount of information inside its pixels [2].  

 

Training or analyzing models with low-resolution pictures presents challenges in surpassing performance achieved with 

high-resolution images. Acquiring a higher-resolution image is not always straightforward. Recognizing and 

identifying objects in low-resolution images is difficult. Consequently, a method to improve the quality of the low-

resolution image while concurrently augmenting its resolution is necessary. This approach is referred to as image super-

resolution [3].  

 

Image super-resolution is used in media creation, medical diagnostics, satellite imaging, and surveillance. Super-

resolution techniques significantly enhance low-resolution images obtained from surveillance cameras. This facilitates 

the execution of tasks such as facial recognition, detection, and identification with enhanced precision. In medical 
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diagnostics, super-resolution may convert low-resolution images into high-resolution ones. This is especially beneficial 

when acquiring high-resolution MRI images presents difficulties. Super-resolution facilitates the creation of high-

resolution images from a small segment of a satellite photograph, despite the whole image being captured from a 

considerable distance and including thousands of pixels. The utilization of high-resolution images, which need more 

storage space and transmission time, is particularly advantageous for reducing their total cost. To save costs, super-

resolution techniques may be used to immediately enhance low-resolution images.  

 

Super-resolution images may be generated from either a single low-resolution picture or many low-resolution 

photographs; these techniques are known as Single-Image Super-resolution and Multi-Image Super-resolution, 

respectively. In contrast to multi-image Super-resolution, which use many low-resolution photos of the same subject to 

generate a high-resolution image, Single-image Super-resolution utilizes a solitary low-resolution snapshot to produce a 

high-resolution image. Single-image Super-resolution techniques are constrained by a limited amount of input data, 

potentially resulting in the reconstruction of a super-resolution image with misleading patterns that do not correspond 

to the original image's context [4].  

 

Due to its extensive data set, Multi-Image Super-resolution is expected to surpass its competition. However, in several 

application cases with constrained resources, the computational expense may escalate significantly, rendering it 

unworkable. Moreover, capturing several low-resolution images of the same item is both impractical and time-

intensive. Thus, the practical significance of Single-Image super-resolution surpasses the intricacy of the problem 

formulation [5].  

It is well acknowledged that single-image super-resolution constitutes a multi-solution ill-posed problem. Due to the 

inability to individually resolve the missing information, it is challenging to accurately identify high-resolution features 

from a solitary low-resolution image [6]. 

 

 This presents an intrinsic problem. [7].  

 

Researchers have devised many algorithms and approaches to tackle this challenge, using their current comprehension 

of the image's structure and properties. Statistical, interpolation, prediction, patch, and edge-based methodologies are 

among the most conventional techniques for generating high-resolution images. Recent research have presented 

learning-based methodologies, such as deep learning frameworks and machine learning, that are more sophisticated and 

effective [8].  

 

Currently, researchers use Convolutional Neural Networks (CNNs) to generate analogous high-resolution images. Very 

Deep Convolutional Networks (VDSR), Deeply Recursive Convolutional Networks (DRCN), and Super-Resolution 

Convolutional Neural Networks (SRCNN) are the predominant frameworks. Generative Adversarial Networks (GANs) 

and other generative models are becoming recognized for their ability to reliably reproduce high-resolution 

counterparts [9].  

 

The primary objective of picture super-resolution is to enhance the visual appeal and functionality of low-resolution 

images for applications such as printing, video conferencing, and surveillance by augmenting their overall quality. 

Imaging system limitations, including low-resolution sensors and image compression techniques, need image super-

resolution methods to recover high-resolution information that is either missing or degraded. Image super-resolution 

enhances the resolution of low-quality pictures, hence increasing the precision of image analysis, identification, and 

interpretation. It may also assist in digital photography, medical imaging, and remote sensing by enabling the 

generation of high-quality images from low-quality sources [10].  

 

The quality of an image is influenced by several factors. The most common issues include suboptimal shooting 

conditions (e.g., fuzzy or dim photographs), insufficient lighting, lens attributes (e.g., noise, blur, or flare), and artefacts 

resulting from post-processing (e.g., lossy compression methods), among others. The resolution may influence the 

image quality. Images of low resolution fail to capture significant information due to the limited number of pixels used 

to represent an object. To efficiently perform tasks such as item categorization and facial recognition, Artificial 
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Intelligence (AI) addresses this difficulty by using a low-resolution image, referred to as a super-resolution image, to 

reconstruct a corresponding high-resolution image. Surveillance cameras and mobile phones are prevalent sources of 

low-resolution (LR) images, often characterized by worse quality.  

 

The predominant methods for image enlargement include bilinear, bicubic, and nearest neighbor interpolation, which 

upscale a low-resolution image to a higher resolution. Rather of incorporating additional information into the image, 

these methods only augment existing dimensions, sometimes resulting in a blurred or pixelated appearance and 

diminishing its quality. Nonetheless, deep learning-based image super-resolution seeks to recover absent or degraded 

high-resolution details from low-resolution images. The technique involves instructing a neural network model on the 

complex interconnections between the two domains by training it on a collection of picture pairings of differing 

resolutions. Subsequently, the model may accept a low-quality input image and generate a high-resolution output. Deep 

learning-based picture super-resolution surpasses image enlargement in quality and aesthetics, exhibiting fewer 

artefacts and reduced blurriness. However, it is more time-intensive and computationally expensive because to the need 

for extensive training data.  

 

A key motivator for deep learning-based image super-resolution is the enhancement of visual quality and detail in low-

resolution photographs. The conversion of low-resolution images to high-resolution ones may enhance several practical 

applications, including digital zooming, surveillance systems, medical imaging, and the improvement of compressed 

picture quality.  

 

II. RELATED WORK 

 

The area of machine learning known as deep learning makes use of the data that is presented in order to automatically 

learn the input-output link. Traditional task-specific learning algorithms, on the other hand, depend on expert domain 

knowledge to pick acceptable handcrafted features. Deep learning approaches, on the other hand, automatically 

generate hierarchical representations via hidden layers. Beginning with the early strategies that were based on 

Convolutional Neural Networks (CNNs), there have been several efforts made to apply deep learning models for SR 

tasks. These attempts have progressed to more promising approaches that use Generative Adversarial Networks 

(GANs) [11]. Different network topologies, loss functions, learning concepts, and methodologies are the primary ways 

in which the deep learning-based SR algorithm family varies from one another. Other differences include the principles 

of learning.  

 

It was the Super-Resolution Convolutional Neural Network, also known as SRCNN, that was the first framework to 

learn a comprehensive mapping from low-resolution to high-resolution images. After then, more deep convolutional 

neural network (CNN) techniques for improving the quality of the SR image were proposed in the research literature 

[11]. The vast majority of CNN-based SISR algorithms upsample the LR image that is generated by using either a 

direct or progressive technique. Pre-upsampling and post-upsampling are the two primary kinds of direct methods to 

SR. Pre-upsampling procedures are more common than post-upsampling approaches. Pre-upsampling SR approaches 

[12, 13] upsample the LR image by using an appropriate interpolation technique. This is done prior to the use of a 

convolutional neural network (CNN) for the purpose of recovering the high-frequency information that was lost in an 

upsampled LR picture. On the other hand, these methods need a massive amount of memory since they rely on 

upsampled pictures, which in turn increases the amount of computing that is required. In order to circumvent these 

issues, many SR techniques that are founded on post-upsampling have been developed. These approaches directly 

extract features from the LR observation. For the purpose of obtaining the final SR image, the features that have been 

recovered are upscaled at the very end of the network by using either sub-pixel [15] or transposed [14] convolution. In 

light of this, SR techniques that depend on post-upsampling have reduced computing costs and memory requirements in 

comparison to those that rely on pre-upsampling. Here, numerous strategies have been described in detail in References 

[11,16] in order to reduce the amount of memory and processing that the SR method requires. But both methods result 

in the appearance of chequerboard artifacts in the SR picture. This is due to the fact that they use a bigger number of 

upsampling layers in order to create the image, which results in a higher upscaling factor (i.e., ×4 ×8).  
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According to the review of the relevant literature [16], the use of a progressive upsampling process as opposed to a 

direct approach has the potential to enhance the quality of the SR results. In order to train their models, the CNN-based 

SR techniques that were stated before make use of pixel-wise loss functions (i.e., L1, L2, Charbonnier) and perform an 

excellent job of retrieving the high-frequency information that is absent from the LR data. The existing body of 

research indicates that these loss functions have the potential to improve quantitative performance, as evaluated by 

metrics such as the Structural Similarity Index Measure (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). This is 

accomplished by maintaining the average of all possible estimated SR images. Despite the fact that the PSNR and 

SSIM measurements have great values, it is nevertheless feasible for the SR data to have a hazy appearance and a lack 

of high-frequency characteristics according to [8].  

 

In an effort to circumvent this problem, the Generative Adversarial Network (GAN), which is a relatively recent tool 

for the SISR challenge, has been developed [6–10]. The generator network in GAN-based SR techniques is able to give 

SR solutions with better high-frequency features, which are subsequently sampled in natural manifolds. This is made 

possible by the discriminator network and proper loss functions. This, in turn, causes the generated SR photographs to 

seem to be extremely similar to the HR images that are based on the ground truth. In their paper [11], Ledig and 

colleagues presented Single Image Super-Resolution using GAN (SRGAN), which was the first SISR approach that 

was based on GAN. Instead of relying on pixel-wise loss functions, the SRGAN model was trained to attain state-of-

the-art performance in terms of perceptual quality of SR results. This was accomplished by using a unique perceptual 

loss derived from the high-level feature mappings of the VGG network in conjunction with a traditional adversarial loss 

function. In order to further improve the SR performance of the SRGAN model, a number of GAN-based SISR models 

make use of a variety of training techniques and loss functions that are unique to them [6,7,8,9,10]. It was mentioned 

before that human perception does not match very well with traditional methods of quality measurement such as PSNR 

and SSIM. An SR image that has a greater PSNR and SSIM does not necessarily include more high-frequency 

information. This is not something that can be assumed. In order for researchers to validate the visual quality of 

surveillance images, they need metrics that were based on human perception. One of these metrics is called a Mean 

Opinion Score (MOS), and it is calculated by taking into account the points that a number of human observers have 

assigned to the second-order image. It is not possible for humans to provide a quality score or an error label to the 

recently made image in a reliable manner. The community of computer vision researchers is currently looking for an 

alternate method in order to achieve their goal of developing a more accurate quantitative measure that is equivalent to 

MOS.  

 

III. METHODOLOGY AND RESULTS 

 

3.1 DCGAN 

A Deep Convolutional Generative Adversarial Network (DCGAN) is a type of Generative Adversarial Network (GAN) 

that employs deep convolutional networks to construct the generator and discriminator, thereby improving the quality 

and stability of image generation. In 2015, the article "Unsupervised Representation Learning with Deep Convolutional 

Generative Adversarial Networks" [17] was published by Alec Radford, Luke Metz, and SoumithChintala, which 

introduced DCGAN. It has paved the way for more intricate designs, such as WGAN and StyleGAN, by being one of 

the most potent GAN versions.  

 

Figure 1 illustrates that GAN is composed of two neural networks. Generator: In this instance, a neural network 

generates fabricated data—images—from arbitrary noise. A discriminator neural network will be capable of 

distinguishing between generated data and genuine data from the training set. The generator and discerning are engaged 

in a min-max game:  

• Generator: aims to deceive the discriminator by generating data that is indistinguishable from genuine data.  
•Discriminator: endeavors to differentiate between synthetic and actual data.  

The objective of concurrently training both networks is to have the generator produce data that is so realistic that the 

discriminator is unable to differentiate between genuine and fraudulent data.  
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Figure 1: DCGAN Architecture [17] 
 

The generator network generates fake images from random noise. Typically, its design comprises the following: 

1. Input: Typically, input is a random noise vector that is a 100-dimensional vector derived from a normal 

distribution. 

2. Layer 1: fully linked layer; subsequent noise reconfiguration as a tensor (e.g., 4x4x1024) 

3. Convolutional layers. A sequence of transposed convolutional layers, also known as deconvolutions, is used to 

upsample the noise vector into a full-size image. Batch normalization and leaky ReLuare intermediate processes. 

4. Output: A picture spanning -1 to 1 is generated by a tanh activation function. 

 

Discriminator The discriminator network evaluates images to determine their authenticity or falsity. Typically, its 

architecture includes the following: 

1. Input: a photograph, either authentic or generated by the generator. 

2. Convolution Layer- The image is progressively reduced in size as hierarchical characteristics are extracted through 

the use of multiple convolutional layers. Utilize batch normalization and leaky ReLU between layers. 

3. Output: A probability of genuine against false is produced by a sigmoid activation function. 

 

3.2 Wasserstein GAN 

Wasserstein GAN (WGAN) is an extension of the original Generative Adversarial Network (GAN) architecture that 

aims to address some of the key issues faced by standard GANs, particularly training instability and mode collapse. 

WGAN introduces a novel loss function, the Wasserstein distance (also known as Earth Mover's Distance), to 

improve the stability of GAN training and produce higher-quality generative models. 

WGAN was introduced by Martin Arjovsky, SoumithChintala, and Léon Bottou in their paper "Wasserstein GAN" 

in 2017 [18]. In this explanation, we will break down the core concepts of WGAN, its architecture, its key innovations, 

and how it resolves some of the issues found in traditional GANs. It is shown in figure 2 
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Figure 2: Wasserstein GAN 

 

Before diving into Wasserstein GANs, it's important to briefly recap the Generative Adversarial Network (GAN) 

framework: 

• Generator (G): The generator produces fake data (e.g., images) from random noise (latent vectors). It learns to 

generate data that resembles the real data distribution. 

• Discriminator (D): The discriminator’s job is to distinguish between real data (from the training set) and fake data 

(from the generator). It assigns a probability score to each sample, indicating whether the data is real or fake. 

The generator and discriminator are trained simultaneously in a minimax game, where the generator tries to improve at 

fooling the discriminator, while the discriminator tries to improve at detecting fake data. 

• GAN Loss: In the traditional GAN, the generator tries to minimize the discriminator’s ability to distinguish real 

from fake data, while the discriminator tries to maximize its ability to differentiate. 

 

This training procedure, however, often leads to instabilities (i.e., when training doesn't converge properly or the 

model produces poor-quality images). This problem is most often caused by the vanishing gradient problem, where 

the discriminator becomes too good at its job, and the generator receives little to no feedback for improving its output. 

The core innovation behind Wasserstein GAN is the replacement of the traditional GAN loss function with the 

Wasserstein loss (also known as the Earth Mover's Distance, EMD), which measures the distance between two 

probability distributions. 

 

The Wasserstein distance intuitively represents the minimum amount of "work" required to transform one distribution 

into another, by "moving" the probability mass. This is a more robust and informative metric compared to the Jensen-

Shannon divergence used in traditional GANs. Wasserstein distance provides a smoother and more continuous loss 

landscape, which helps resolve many of the training issues seen in standard GANs. 
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In WGAN, the critic (not the discriminator) learns to approximate the Wasserstein distance between the real and 

generated distributions. The critic's role is to assign a real-valued score to both real and fake data, and the loss function 

is defined as: 

LWGAN=Ex∼Preal[D(x)]−Ex∼Pfake[D(G(z))]\mathcal{L}_{WGAN} = \mathbb{E}_{x \sim P_{\text{real}}} [D(x)] 

- \mathbb{E}_{x \sim P_{\text{fake}}} [D(G(z))]LWGAN=Ex∼Preal[D(x)]−Ex∼Pfake[D(G(z))] 

Where: 

• D(x)D(x)D(x) is the critic’s score for the real data xxx, 

• G(z)G(z)G(z) is the generated data from the generator GGG, 

• PrealP_{\text{real}}Preal and PfakeP_{\text{fake}}Pfake are the real and fake data distributions, 

respectively. 

This loss function encourages the generator to produce outputs that minimize the Wasserstein distance between the 

generated distribution and the real distribution, effectively pushing the generated data closer to the real data. 

 

1. Critic instead of Discriminator: 

• In WGAN, the discriminator from the traditional GAN is replaced by a critic. 

• The critic outputs real-valued scores (rather than probabilities) for both real and fake data. 

• The critic's goal is to approximate the Wasserstein distance between the real and generated data distributions. 

2. Weight Clipping: 

• To enforce the Lipschitz continuity required for Wasserstein distance, the weights of the critic are constrained 

using weight clipping. 

• This means that the weights of the critic are limited to a certain range (typically [-0.01, 0.01]). Weight clipping 

ensures that the critic’s function is a 1-Lipschitz function, which is a necessary condition for the Wasserstein 

distance to be valid. 

3. Training Procedure: 

• Critic: The critic is trained multiple times per generator update. In practice, the critic is updated around 5 times for 

each update of the generator. 

• Generator: The generator is updated once every few critic updates. This allows the critic to approximate the 

Wasserstein distance more accurately before updating the generator. 

 

3.3 Results 

Set5 [19] image dataset contains five popular images: one medium size image (‘baby’, 512 × 512) and four smaller 
ones (‘bird’, ‘butterfly’, ‘head’, ‘women). Set5 dataset is widely used for image super-resolution tasks due to its small 
size, diverse content, and availability of ground truth images.Set five images are shown in figure 3 below. Output 
images are shown in figure 4. Performance comparison of DCGAN and Wasserstein GAN are shown in Table 1, Table 
2, figure 5 and figure 6. Wasserstein GAN is performing better than DCGAN on PSNR, SSIM and VIF parameters. 
 

 
 

Figure 3: Set 5 Images 
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Figure 4: Output Images using the Set5 dataset. (a) Input Image (b) Output image using DCGAN  (c) Output 
image using Wasserstein GAN 

 

Numerous criteria are crucial when assessing super-resolution technology. These measurements provide numerical 

approaches for evaluating the quality of visual reconstruction. The fidelity is evaluated using the Peak Signal-to-Noise 

Ratio (PSNR), which quantifies the peak signal power relative to the noise power. The structural similarity index 

(SSIM) evaluates the correspondence between the ground truth and the reconstructed image for structure, contrast, and 

luminance. The term "visual information fidelity" (VIF) refers to the preservation of visual features and textures. The 

average squared difference between the original data and the reconstructed image is referred to as mean squared error 

(MSE). Numerous metrics provide a comprehensive assessment by quantifying various aspects of image quality and 

performance.  

 

The primary image evaluation criteria included in our testing were the Structural Similarity Index (SSIM), Mean 

Squared Error (MSE), and Peak Signal-to-Noise Ratio (PSNR). PSNR assesses the greatest discrepancy between the 

original high-resolution image and the reconstructed SR image, whereas SSIM examines the extent of structural 

similarity between the two images. The mean squared error (MSE) quantifies the divergence between the actual and 

super-resolved pictures.  

 

The Peak Signal-to-Noise Ratio (PSNR) is a metric for signal quality that compares the peak signal intensity to the 

mean squared error between the ground truth and reconstructed signals. This numerical measure evaluates the extent to 

which signal reconstruction or compression processes introduce noise or diminish quality. Their simplicity and clarity 

are the grounds for their extensive use. PSNR is valuable for assessing various compression techniques and 

understanding their effects on image or video quality.  

 

The Structural Similarity Index (SSIM) assesses the extent of structural similarity between two pictures by evaluating 

criteria such as brightness, contrast, and structural elements. SSIM offers a more precise assessment than pixel-wise 

metrics by accounting for the nuances of human visual perception. It is robust because to its ability to endure variations 

in contrast, brightness, and other aberrations. In the context of image restoration and compression assessments, SSIM is 

an excellent option due to its capability to capture perceptually significant features and structural characteristics.  

Mean Squared Error (MSE) quantifies signal distortion or inaccuracy by averaging the squared differences between the 

original and reconstructed signals. This metric offers significant advantages in computing efficiency and ease of usage. 
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It serves as a fundamental parameter for evaluating the performance of algorithms in image or video processing and is 

often used as a baseline for comparisons.  

 

Visual Information Fidelity (VIF) assesses the quality of reconstructed signals by using visual fidelity and perceptual 

content, hence evaluating the retention of visual information in images or movies. VIF effectively captures essential 

structural nuances and visual intricacies by considering both local and global elements. In domains where visual 

perception is essential, such as medical imaging and video surveillance, VIF provides a valuable method for evaluating 

the quality of pictures or videos, considering the intricacies of human vision.  

 

Table 1: Performance Comparison of DCGAN and Wasserstein GAN for Image 1 

 

Model Name PSNR SSIM VIF 

DCGAN 31.72 0.88 0.90 

Wasserstein GAN 33.95 0.91 0.92 

 

Table 2: Performance Comparison of DCGAN and Wasserstein GAN for Image 2 

 

Model Name PSNR SSIM VIF 

DCGAN 30.56 0.891 0.88 

Wasserstein GAN 32.87 0.906 0.94 

 

 
 

Figure 5: Comparison of DCGAN and Wasserstein GAN for Image 1 

DCGAN Wasserstein GAN
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Figure 6: Comparison of DCGAN and Wasserstein GAN for Image 

 

IV. CONCLUSION 

 

Generative models, such as Generative Adversarial Networks (GANs), are increasingly capable of accurately 

simulating their high-resolution counterparts. The primary objective of picture super-resolution is to enhance the 

overall quality of low-resolution photographs, thereby enhancing their appearance and functionality for applications 

such as surveillance, video conferencing, and printing. The recovery of lost or degraded high-resolution information is 

necessitated by image super-resolution techniques, which are necessary due to imaging system constraints, including 

low-resolution sensors and image compression mechanisms. The lucidity of low-resolution images is enhanced by 

image super-resolution, resulting in more precise identification, analysis, and interpretation. Its capacity to enhance 

low-quality input images may prove advantageous in the fields of medical imaging, remote sensing, and digital 

photography. This paper contrasts the efficacy of DCGAN and Wasserstein GAN in picture synthesis by employing 

picture super resolution as a benchmark. The experimental research employs the Set5 picture data acquisition. 

Wasserstein GAN surpasses DCGAN in terms of PSNR, SSIM, and VIF metrics.  
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