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ABSTRACT: PREDICTING drug-target binding affinity (DTA prediction) is crucial in new drug development as well 

as drug repurposing. The gold standard to determine the binding affinity is by experimental assays but this is 

prohibitively expensive as a rapid screening tool as there are over 100 million drug-like compounds and over 5000 

potential protein targets. Therefore, it is necessary to have alternative computational methods using simulation or 

machine learning to predict the binding affinity of novel drug-target pairs. Machine learning methods are particularly 

attractive because they offer cheap and fast alternatives with reasonable performance thanks to the large DTA databases 

that we can leverage on.  

With the advance of machine learning, many computational prediction methods [5]–[8] have been proposed to tackling 

DTA. In recent existing works, the protein is typically represented as a string of amino acids denoted by letters [7]–[9]. 

The drawback of using protein sequence is that it can not represent the 3D structure of the protein which is crucial 

information for determining the binding affinity between protein and drug in practice. However, obtaining the high-

resolution 3D structure is a challenging task. A more practical solution is using the 2D pairwise distance or contact 

maps to represent tertiary protein structure. These maps can now be determined with reasonable accuracy from deep 

learning powered algorithms.  

 

         In proposed work, Designed a novel deep learning method, called GEFA (Graph Early Fusion for binding 

Affinity prediction) for target-drug affinity prediction, a crucial task for rapid virtual drug screening and drug 

repurposing. To improve the power of protein representation, we use self-supervised to take advantage of a large 

amount of unlabeled target sequences. To address the latent representation change due to conformation change during 

the binding process, the early fusion between drug and target is proposed. Unlike the late fusion approach extracting 

representation separately, the early fusion approach integrates drug representation info into protein representation 

learning phase. The self-attention value of the target sequence is used as edge weight connecting drug node and residue 

node in the target protein graph. Self-attention allows the model more interpretable as it shows which residues 

contribute to the binding process and the level of contribution of each residue. The quantitative experiments show that 

the early fusion approach has advantages over the late fusion approach. Using the embedding feature as target node 

feature has advantages over using one-hot encoding. Residual block design allows stacking multiple GCN layers for 

better learning representation capability.  
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I. INTRODUCTION 
 

Computational with the use of image analysis techniques and machine learning representations of data at several 

degrees of complexity made possible by deep learning. These methods have considerably improved the state of the art 

in many other domains, including object identification, visual object recognition, voice recognition, connecting DNA to 

drug discovery, and object identification. By employing a reverse propagation strategy to suggest changes to a tool's 

internal parameters that are used to define the model in each layer from the representation in the preceding layer, it may 

uncover sophisticated architectures in enormous data sets. Recurring nets have shed more insight into certain data 

categories including speech and text whereas deep convolutional networks have improved at analyzing pictures, video, 

voice, and audio. selecting relevant search results, identifying objects in pictures, text-to-speech conversion, matching 

news stories, posts, or items with users' interests, and more. Such applications employ more and more of the deep 

training approach. The potential of conventional Data that was natural in its raw form could only be analyzed using 

limited machine learning techniques. Over the years,  developing a feature extractor that transformed the raw data (such 

as the pixel Building pattern recognition or artificial intelligence system requires understanding the values of a picture 



 
  | DOI: 10.15680/IJIRCCE.2024.1205214 | 

IJIRCCE©2024                                                       |     An ISO 9001:2008 Certified Journal   |                                                   6446 

system. This needed thorough design and in-depth subject-matter expertise. The knowledge Often referred to as the classifier, 

the subsystem may identify or categorize patterns in the data input into an appropriate internal representation or feature 

vector. 

II. RELATED WORK 

 

Drug Re-purposing as an Alternative Medication for Novel Disease Drug re-purposing [18] is the process of identifying 

wellestablished medications for the novel target disease. The advantages of this drug re-purposing over developing a 

completely novel drug are lower risk and fast-track development [19]. The process of drug re-purposing consists of three key 

steps: identifying the candidate molecules given the target disease, drug effect assessment in the preclinical trial, and 

effectiveness assessment in clinical trial [20]. The first step, hypothesis generation, is critical as it decides the success of the 

whole process. Advanced computational approaches are used for hypothesis generation. Computational approaches in drug 

re-purposing can be categorized into six groups [20]: genetic association [21], [22], pathway pathing [23]–[25], retrospective 

clinical analysis [26]–[28], novel data sources, signature matching [29]–[31], molecular docking [32]-[34]. 

 

III. LITERATURE SURVEY 

[1] M. Thafar, A. B. Raies, S. Albaradei, M. Essack, and V. B. Bajic, “Comparison study of computational prediction tools 

for drug-target binding affinities,” Frontiers in Chemistry, vol. 7, 2019. 

 

The drug development is generally arduous, costly, and success rates are low. Thus, the identification of drug-target 

interactions (DTIs) has become a crucial step in early stages of drug discovery. Consequently, developing computational 

approaches capable of identifying potential DTIs with minimum error rate are increasingly being pursued. These 

computational approaches aim to narrow down the search space for novel DTIs and shed light on drug functioning context. 

Most methods developed to date use binary classification to predict if the interaction between a drug and its target exists or 

not. However, it is more informative but also more challenging to predict the strength of the binding between a drug and its 

target. If that strength is not sufficiently strong, such DTI may not be useful. Therefore, the methods developed to predict 

drug-target binding affinities (DTBA) are of great value. In this study, we provide a comprehensive overview of the existing 

methods that predict DTBA. We focus on the methods developed using artificial intelligence (AI), machine learning (ML), 

and deep learning (DL) approaches, as well as related benchmark datasets and databases. Furthermore, guidance and 

recommendations are provided that cover the gaps and directions of the upcoming work in this research area. To the best of 

our knowledge, this is the first comprehensive comparison analysis of tools focused on DTBA with reference to AI/ML/DL.  

 

[2] X. Chen, C. C. Yan, X. Zhang, X. Zhang, F. Dai, J.Yin, and Y. Zhang, “Drug–target interaction prediction: databases, web 

servers and computational models,” Briefings in Bioinformatics, vol. 17, no. 4, pp. 696–712, Jul. 2016.  

 

Identification of drug–target interactions is an important process in drug discovery. Although high-throughput screening and 

other biological assays are becoming available, experimental methods for drug–target interaction identification remain to be 

extremely costly, time-consuming and challenging even nowadays. Therefore, various computational models have been 

developed to predict potential drug–target associations on a large scale. In this review, databases and web servers involved in 

drug–target identification and drug discovery are summarized. In addition, we mainly introduced some state-of-the-art 

computational models for drug–target interactions prediction, including network-based method, machine learning-based 

method and so on. Specially, for the machine learning-based method, much attention was paid to supervised and semi-

supervised models, which have essential difference in the adoption of negative samples. Although significant improvements 

for drug–target interaction prediction have been obtained by many effective computational models, both network-based and 

machine learning-based methods have their disadvantages, respectively. Furthermore, we discuss the future directions of the 

network-based drug discovery and network approach for personalized drug discovery based on personalized medicine, 

genome sequencing, tumor clone-based network and cancer hallmark-based network. Finally, we discussed the new 

evaluation validation framework and the formulation of drug–target interactions prediction problem by more realistic 

regression formulation based on quantitative bioactivity data.  

 

[3] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He,Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, et al., “PubChem 

2019 update: improved access to chemical data,” Nucleic Acids Research, vol. 47, no. D1, pp. D1102– D1109, 2019.  

 

PubChem (https://pubchem.ncbi.nlm.nih.gov) is a key chemical information resource for the biomedical research community. 

Substantial improvements were made in the past few years. New data content was added, including spectral information, 

scientific articles mentioning chemicals, and information for food and agricultural chemicals. PubChem released new web 

interfaces, such as PubChem Target View page, Sources page, Bioactivity dyad pages and Patent View page. PubChem also 
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released a major update to PubChem Widgets and introduced a new programmatic access interface, called PUG-View. This 

paper describes these new developments in PubChem 

  

[4] M. K. Gilson, T. Liu, M. Baitaluk, G. Nicola, L. Hwang,and J. Chong, “BindingDB in 2015: a public database for 

medicinal chemistry, computational chemistry and systems pharmacology,” Nucleic Acids Research, vol. 44, no. D1, 

pp. D1045–D1053, 2016. 

 

BindingDB, www.bindingdb.org, is a publicly accessible database of experimental protein-small molecule interaction 

data. Its collection of over a million data entries derives primarily from scientific articles and, increasingly, US patents. 

BindingDB provides many ways to browse and search for data of interest, including an advanced search tool, which 

can cross searches of multiple query types, including text, chemical structure, protein sequence and numerical affinities. 

The PDB and PubMed provide links to data in BindingDB, and vice versa; and BindingDB provides links to pathway 

information, the ZINC catalog of available compounds, and other resources. The BindingDB website offers specialized 

tools that take advantage of its large data collection, including ones to generate hypotheses for the protein targets bound 

by a bioactive compound, and for the compounds bound by a new protein of known sequence; and virtual compound 

screening by maximal chemical similarity, binary kernel discrimination, and support vector machine methods. 

Specialized data sets are also available, such as binding data for hundreds of congeneric series of ligands, drawn from 

BindingDB and organized for use in validating drug design methods. BindingDB offers several forms of programmatic 

access, and comes with extensive background material and documentation. Here, we provide the first update of 

BindingDB since 2007, focusing on new and unique features and highlighting directions of importance to the field as a 

whole. 

 

[5] A. Cichonska, B. Ravikumar, E. Parri, S. Timonen, T.Pahikkala, A. Airola, K. Wennerberg, J. Rousu, and T. 

Aittokallio, “Computational-experimental approach to drug-target interaction mapping: a case study on kinase 

inhibitors,” PLOS Computational Biology, vol. 13, no. 8, e1005678, 2017. 

 

Due to relatively high costs and labor required for experimental profiling of the full target space of chemical 

compounds, various machine learning models have been proposed as cost-effective means to advance this process in 

terms of predicting the most potent compound-target interactions for subsequent verification. However, most of the 

model predictions lack direct experimental validation in the laboratory, making their practical benefits for drug 

discovery or repurposing applications largely unknown. Here, we therefore introduce and carefully test a systematic 

computational-experimental framework for the prediction and pre-clinical verification of drug-target interactions using 

a well-established kernel-based regression algorithm as the prediction model. To evaluate its performance, we first 

predicted unmeasured binding affinities in a large-scale kinase inhibitor profiling study, and then experimentally tested 

100 compound-kinase pairs. The relatively high correlation of 0.77 (p < 0.0001) between the predicted and measured 

bioactivities supports the potential of the model for filling the experimental gaps in existing compound-target 

interaction maps. Further, we subjected the model to a more challenging task of predicting target interactions for such a 

new candidate drug compound that lacks prior binding profile information. As a specific case study, we used tivozanib, 

an investigational VEGF receptor inhibitor with currently unknown off-target profile. Among 7 kinases with high 

predicted affinity, we experimentally validated 4 new off-targets of tivozanib, namely the Src-family kinases FRK and 

FYN A, the non-receptor tyrosine kinase ABL1, and the serine/threonine kinase SLK. Our sub-sequent experimental 

validation protocol effectively avoids any possible information leakage between the training and validation data, and 

therefore enables rigorous model validation for practical applications. These results demonstrate that the kernel-based 

modeling approach offers practical benefits for probing novel insights into the mode of action of investigational 

compounds, and for the identification of new target selectivities for drug repurposing applications 

IV. PROPOSED ALGORITHM 

Gradient boosting 
Gradient boosting is a versatile machine learning technique employed in regression and classification tasks, among 

others. It constructs a prediction model in the form of an ensemble of weak prediction models, typically decision trees. 

When using decision trees as the weak learner, the resulting algorithm is referred to as gradient-boosted trees, often 

surpassing the performance of random forests. The construction of a gradient-boosted trees model occurs in a stage-

wise manner, similar to other boosting methods, but it stands out by allowing the optimization of an arbitrary 

differentiable loss function. 
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K-Nearest Neighbors (KNN) 
K-Nearest Neighbors (KNN) is a straightforward yet highly effective classification algorithm that operates based on a 

similarity measure. It is non-parametric and employs lazy learning, meaning it does not "learn" until presented with a 

test example. Whenever there is a new data point to classify, KNN identifies its K-nearest neighbors from the training 

data and determines its classification based on their majority vote or weighted vote. 

 

Logistic regression 
Logistic regression analysis explores the relationship between a categorical dependent variable and a set of independent 

variables. The term "logistic regression" is applied when the dependent variable has only two values, such as 0 and 1, 

or Yes and No. On the other hand, "multinomial logistic regression" is used when the dependent variable has three or 

more unique values, like Married, Single, Divorced, or Widowed. While the nature of data for the dependent variable 

differs from that of multiple regressions, the practical application of the procedure remains similar. 

Logistic regression serves as a competitor to discriminant analysis in analyzing categorical-response variables. Many 

statisticians favor logistic regression due to its versatility and suitability for modeling various situations compared to 

discriminant analysis. This preference arises from logistic regression's ability to not assume that the independent 

variables follow a normal distribution, unlike discriminant analysis. 

 

NAIVE BAYES 
The naive Bayes approach is a supervised learning method founded on a simple assumption: it presumes that the 

presence or absence of one feature of a class is independent of the presence or absence of any other feature. Despite its 

simplicity, it demonstrates robustness and efficiency comparable to other supervised learning techniques. One 

explanation often highlighted in the literature is based on representation bias. 

The naive Bayes classifier operates as a linear classifier, akin to linear discriminant analysis, logistic regression, or 

linear support vector machines (SVMs). However, the distinction lies in the method used to estimate the classifier's 

parameters, known as the learning bias. Although the naive Bayes classifier finds extensive use in the research 

community due to its ease of programming, parameter estimation simplicity, rapid learning even with large datasets, 

and reasonably good accuracy compared to other methods, it remains less popular among practitioners seeking practical 

results. Researchers appreciate its simplicity and efficacy. However, practitioners often struggle with its interpretability 

and deployment, as they may not grasp its relevance or utility. 

 

Random forests 
Random forests, also known as random decision forests, represent an ensemble learning technique used for 

classification, regression, and other tasks. They function by constructing numerous decision trees during training. For 

classification tasks, the output of the random forest is determined by the class selected by the majority of trees. 

Conversely, for regression tasks, the mean or average prediction of the individual trees is returned. Random decision 

forests aim to mitigate the issue of decision trees overfitting to their training set. 

In general, random forests tend to outperform individual decision trees, although they may have lower accuracy 

compared to gradient boosted trees. Nonetheless, the performance of random forests can be influenced by the 

characteristics of the data. 

 

The concept of random decision forests was first introduced in 1995 by Tin Kam Ho, who utilized the random subspace 

method. This method, as formulated by Ho, serves as an implementation of the "stochastic discrimination" approach to 

classification initially proposed by Eugene Kleinberg. 

 

Support Vector Machine (SVM) 
Support Vector Machine (SVM) represents a discriminant machine learning technique commonly used in classification 

tasks. It aims to find a discriminant function, based on an independently and identically distributed training dataset, that 

accurately predicts labels for newly acquired instances. Unlike generative machine learning approaches, which 

necessitate computations of conditional probability distributions, a discriminant classification function assigns a data 

point x to one of the classes involved in the classification task. Compared to generative approaches, discriminant 

methods may be less powerful, particularly in outlier detection scenarios. However, they require fewer computational 

resources and less training data, especially in multidimensional feature spaces and when only posterior probabilities are 

necessary. Geometrically, learning a classifier equates to identifying the equation for a multidimensional surface that 

optimally separates the different classes in the feature space. 

 

SVM is a discriminant technique that solves convex optimization problems analytically, consistently yielding the same 

optimal hyperplane parameters. In contrast, genetic algorithms (GAs) and perceptrons, both widely used for 
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classification in machine learning, may produce solutions highly dependent on initialization and termination criteria. 

With a specific kernel transforming data from the input space to the feature space, SVM training returns uniquely 

defined model parameters for a given training set, whereas perceptron and GA classifier models vary with each training 

iteration.          

2.3 PROPOSED MODULES 

2.3.1 Service Provider  

 

 

                                                            SYSTEM ARCHITECTURE 

 

 

V. SIMULATION RESULTS 

 

We report our late fusion approach, GLFA, and early fusion approach, GEFA, with previous works in Davis 

benchmark on four settings in Table 1 and in PDBBind dataset (Table 2). Our proposed method GEFA consistently 

outperforms previous works in four settings of Davis dataset and generalrefined setting of PDBBind dataset. Our 

proposed methods achieve state-of-the-art performance across all four settings. Between two late fusion based methods 

DGraphDTA [15] and GLFA, our proposed GLFA method also outperforms DGraphDTA. This follows our 

expectations as the embedding feature contains richer information than one-hot encoding and PSSM. This also 

demonstrates the advantage of using the residual block. DGraphDTA [15], GLFA, and GEFA outperform GINConvNet 

in all four settings. GINConvNet and GCNConvNet [8] only use sequence and CNN to learn the target representation. 

On the other hand, DgraphDTA [15], GLFA, and GEFA use the graph built from the protein contact map and learn the 

target representation using GCN. This demonstrates the advantage of using the graph representation of the contact map.  
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                                                                        VI. CONCLUSION AND FUTURE WORK 

 

We have proposed a novel deep learning method, called GEFA (Graph Early Fusion for binding Affinity prediction) for 

target-drug affinity prediction, a crucial task for rapid virtual drug screening and drug repurposing. To improve the 

power of protein representation, we use self-supervised to take advantage of a large amount of unlabeled target 

sequences. To address the latent representation change due to conformation change during the binding process, the 

early fusion between drug and target is proposed. Unlike the late fusion approach extracting representation separately, 

the early fusion approach integrates drug representation info into protein representation learning phase. The self-

attention value of the target sequence is used as edge weight connecting drug node and residue node in the target 

protein graph. Self-attention allows the model more interpretable as it shows which residues contribute to the binding 

process and the level of contribution of each residue. The quantitative experiments show that the early fusion approach 

has advantages over the late fusion approach. Using the embedding feature as target node feature has advantages over 

using one-hot encoding. Residual block design allows stacking multiple GCN layers for better learning representation 

capability If we can learn the edge change, we can express the conformation change caused by the drug-target binding. 
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In addition, in case the target protein has multiple binding pocket at different regions, the drug molecule may only bind 

at one pocket at one time. However, in our model, the drug node links to all possible binding sites indicated by self-

attention mask. The binding process modeling will be more accurate if we can combine drug info into the finding drug-

residues edges process. Our framework can be applied for RNA with binding sites capable of binding drug-like 

molecules. However, in case of drugs binding to the secondary structure of RNA, the binding mechanism can be 

different and the target graph may require modifications to represent the secondary structure interaction. 
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