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ABSTRACT: Cyberbullying is a growing concern on social media platforms. This research presents an automated 

system for detecting cyberbullying in social media messages using a combination of supervised machine learning (ML) 

and natural language processing (NLP) techniques. The system utilizes a pre-trained model to classify messages as 

bullying or non-bullying based on textual features. It combines traditional ML models, like Logistic Regression, with 

advanced deep learning methods such as Long Short-Term Memory (LSTM) networks to analyze user-generated 

content. Preprocessing steps, including tokenization, stop word removal, and TF-IDF vectorization, transform raw text 

into structured data for model training. The model is trained on a labeled dataset containing both bullying and non-

bullying messages to improve classification accuracy. A Streamlit-based web application allows users to input 

messages and receive real-time feedback on whether the message is classified as cyberbullying. This system aims to 

assist social media platforms in identifying and preventing cyberbullying, contributing to safer online communities. 

Experimental results highlight its potential for real-world deployment.  

 

KEYWORDS: Automated Cyberbullying Detection, Digital Harassment Identification, AI Driven Social Media 

Monitoring, NLP Based Cyberbullying Filter, Real-Time Bullying Classifier 

 

I. INTRODUCTION 

 

In the digital age, platforms like Twitter, Facebook, Instagram, and TikTok have redefined communication, enabling 

global interaction and real-time sharing. However, they also bring challenges, particularly cyberbullying, which is 

distinct from traditional bullying due to its anonymity and rapid content spread [1]. Cyberbullying has serious 

psychological effects, including anxiety, depression, and suicidal tendencies, especially for vulnerable groups like 

teenagers, young adults, and marginalized communities [2]. Reports show alarming levels of online harassment, 

emphasizing the need for scalable, automated solutions to replace impractical manual moderation [3]. This study 

focuses on cyberbullying detection using machine learning (ML) and natural language processing (NLP) techniques. 

By employing supervised learning models like Logistic Regression and Long Short-Term Memory (LSTM) networks, 

the system accurately analyzes social media messages to identify harmful content. Extensive text preprocessing, 

including tokenization, stop word removal, and TF-IDF vectorization, converts raw messages into structured data for 

analysis. These methods help the system account for the complex and nuanced nature of online communication, 

achieving high accuracy in detecting abusive behavior. Ethical considerations and cultural sensitivity are integral to this 

research, ensuring the system is inclusive and respects linguistic diversity. This study aims to create safer, more 

inclusive digital environments and contribute to global efforts to combat online harassment [4]. It also acknowledges 

the intersectionality of online abuse with misinformation, hate speech, and privacy violations. The proposed system 

could be expanded to detect and mitigate these issues, offering a comprehensive framework for promoting respectful 

online communication as digital platforms evolve.  

 

II. LITERATURE REVIEW 

 

The rise of offensive language on social media platforms has sparked extensive research into detecting and mitigating 

such behavior using advanced machine learning and deep learning methods. In a study by Kaur et al. (2024), a multi-

class classification model for offensive language detection was introduced. The model, based on a dataset of 14,200 

labeled tweets, categorized text into three levels: offensive language detection, categorization, and target identification. 

Preprocessing techniques such as tokenization, TF-IDF for feature selection, and word cloud visualizations improved 
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the data quality [5]. Models like bidirectional gated recurrent units (Bi-GRU), multi-dense long short-term memory 

(LSTM), and bidirectional LSTM achieved impressive results, with Bi-LSTM reaching 99.9% accuracy for target 

identification and the lowest loss of 0.01. Park and Fung (2017) applied a hybrid CNN-based approach to classify racist 

and sexist language using a multi-class framework [6].  

 

Their study, processing 20,000 tweets, found that SVM achieved 83.9% precision, though improvements were needed 

in robustness. Similarly, Chakraborty and Seddiqui (2019) used NLP techniques to predict abusive language in Bengali 

texts with models like SVM, Naive Bayes, and CNN combined with LSTM. SVM provided the highest accuracy at 

78%, though the authors noted that additional features were needed to enhance performance. Nayel and Shashirekha 

(2019) focused on detecting hate speech in Indo-European languages, reporting good results despite a small dataset. 

Pitenis et al. (2020) studied offensive content detection in Greek texts using the Offensive Greek Tweet Dataset of 

4,800 tweets [7].  

 

Their findings highlighted the effectiveness of LSTM and GRU, which outperformed other algorithms in terms of 

accuracy. Likewise, Ibrohim and Budi (2018) developed a hate speech and abusive language detection model for 

Indonesian tweets, utilizing classifiers like Random Forest and SVM. The model achieved a moderate accuracy of 

77.36%, suggesting that more robust classification techniques were needed. Akhter et al. (2021) created an abusive 

language detection model for Roman Urdu comments using CNN, achieving an accuracy of 96.2%, showcasing the 

potential of deep learning in multilingual contexts. Haque et al. (2023) carried out multi-class sentiment classification 

for Bengali social media comments, analyzing 42,036 Facebook posts [8].  

 

Their approach categorized text into four classes (religious, sexual, political, and acceptable) and used classifiers like 

logistic regression and SVM. The highest accuracy of 93.3% was achieved through stochastic gradient descent and 

random forest. Sabry et al. (2022) examined abusive content in tweets using Bi-LSTM on datasets like HASOC 2021 

and OLID 2019, achieving F1 scores of 83.05% and 82.90%, respectively, though they noted challenges in handling 

long-range dependencies in text. Several studies emphasize the importance of contextual embeddings and multi-layer 

architectures for improving performance. For example, Bidirectional LSTM (Bi-LSTM) and multi-dense LSTM models 

are recognized for their ability to process sequential data effectively. When combined with pre-trained embeddings 

such as Word2Vec and BERT, these models enable robust classification and identification of abusive language across 

different languages and platforms. Common preprocessing steps like tokenization, stemming, and punctuation removal 

are universally acknowledged as essential for enhancing the quality of training data. Despite significant progress in 

abusive language detection, challenges such as imbalanced datasets, real-time detection, and generalization to unseen 

data persist [9]. Future research could explore integrating multimodal datasets, including text, images, and audio, to 

further improve the accuracy and versatility of detection systems in various online environments.  

 

 
 

Fig.1. Flow diagram of the cyber bullying detection system architecture. 

 

III. METHODOLOGY 

 

Despite advancements in cyber bullying and offensive language detection, existing models still face several challenges 

that limit their effectiveness. One key issue is the difficulty in understanding sequential context, as many systems 

struggle to capture the flow and meaning of conversations, leading to misclassifications. To address this, the proposed 
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model employs Long Short-Term Memory (LSTM) networks, which excel at retaining and analyzing context across 

sequences, thereby improving classification accuracy [10]. Another challenge is the presence of irrelevant data, such as 

stop words and symbols, which can dilute model performance. To mitigate this, the system applies robust preprocessing 

techniques, including tokenization, stop word removal, and TF-IDF vectorization, ensuring the use of only meaningful 

data for analysis [11]. Additionally, existing models often struggle with detecting subtle offensive language, 

particularly in nuanced or context-dependent scenarios. To overcome this, the model combines Logistic Regression 

with LSTM networks, leveraging the efficiency of machine learning for feature extraction and the contextual 

understanding provided by deep learning. The architecture is structured to address these challenges throughout the 

process. It begins with data collection, followed by preprocessing, feature extraction, and classification. By integrating 

machine learning and deep learning techniques, the model effectively classifies text into "bully" and "non-bully" 

categories, offering a more accurate and reliable solution for detecting offensive language across online platforms [12].  

The system architecture, as illustrated in Fig. 1. is designed to address the challenges in detecting cyber bullying and 

offensive language systematically. It comprises four main components: Data Collection, Preprocessing, Feature 

Extraction and Selection, and Classification, each contributing to the accurate and reliable identification of "bully" and 

"non-bully" content. 

 

A. Data collection and Exploration  

The proposed system architecture begins with a structured sequence of steps, starting with data preprocessing. The 

foundation of the proposed system is built upon a carefully curated dataset consisting of text messages labeled for 

toxicity. The dataset, comprising a total of 33,754 entries, is structured into two distinct columns: TEXT and 

TOXICITY. The TEXT column contains the actual text messages, while the TOXICITY column categorizes each 

message as either toxic or non-toxic, forming the basis for the classification task. Specifically, messages labeled as toxic 

contain offensive, harmful, or inappropriate content, while those labeled as non-toxic are considered benign or neutral. 

This binary classification task aims to develop a system capable of distinguishing between these two categories with 

high accuracy. Upon a deeper analysis of the dataset, a notable issue emerged: a significant class imbalance. Out of the 

33,754 samples, 22,447 messages were labeled as non-toxic, while 11,289 messages were marked as toxic. This 

imbalance between the two classes posed a challenge for the machine learning models, as models trained on 

imbalanced datasets are more likely to favor the majority class. Consequently, the model may develop a bias toward 

predicting non-toxic messages, leading to suboptimal performance when it comes to identifying toxic content. This type 

of class imbalance is common in many real-world datasets, and handling it effectively is critical for building a robust 

classifier [13]. Several strategies, such as oversampling the minority class or undersampling the majority class, or using 

specialized evaluation metrics, would need to be considered to mitigate this issue. Additionally, during the exploratory 

data analysis phase, it was observed that 18 entries contained missing text data, which could potentially undermine the 

integrity of the dataset. Missing data, particularly in the TEXT column, is problematic, as it limits the available 

information for training the model. To ensure the analysis remains accurate and reliable, these entries were carefully 

removed from the dataset. By excluding incomplete data, the dataset was refined, providing a cleaner and more 

consistent input for the subsequent analysis [14]. This initial phase of data exploration and cleaning underscored the 

critical importance of preprocessing. The steps taken addressing class imbalance and removing missing entries are 

essential in preparing the data for feature extraction and model training. Proper data preprocessing is fundamental to 

ensuring the effectiveness of machine learning models, as it directly impacts their ability to generalize and make 

accurate predictions [15]. With a clean and well-balanced dataset, the system can be trained to accurately identify toxic 

messages, setting the stage for the development of a robust and reliable classification model.  

 

B. Data Preprocessing  

To prepare the dataset for machine learning and deep learning models, a series of comprehensive preprocessing steps 

were carried out to ensure the removal of noise, irrelevant information, and inconsistencies. These steps were essential 

to improve the quality of the data, thereby increasing the performance and reliability of the predictive models. The first 

crucial step in the preprocessing pipeline involved cleaning the text data. Since textual data is inherently messy and 

may contain unnecessary characters, this cleaning process was essential to streamline the input for the models. All 

characters in the text were converted to lowercase, ensuring uniformity and eliminating any inconsistencies caused by 

varying cases (e.g., “Toxic” vs. “toxic”). By standardizing the text in this manner, the models could process the words 

in a consistent format. Next, punctuation marks, such as commas, periods, exclamation points, and question marks, 

were removed. Punctuation does not contribute meaningful information to the context of the text when performing 

sentiment analysis or toxicity classification. By removing these characters, the dataset was further simplified, allowing 
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the models to focus on the core words and phrases that carry the most valuable semantic content. The subsequent step 

was the removal of stop words, which are common, high-frequency words that typically do not contribute to the 

meaning of a sentence, such as "and," "the," "is," "in," etc. Using the Natural Language Toolkit (NLTK), a popular 

Python library for natural language processing, a predefined list of stop words was employed to filter out these non-

informative terms [16]. The removal of stop words reduced redundancy and improved the efficiency of the models by 

focusing the analysis on more meaningful, content-rich words. In addition to text-based transformations, the categorical 

labels in the TOXICITY column were converted into numerical values using label encoding. Machine learning 

algorithms typically require numerical data as input, and categorical labels like "toxic" and "non-toxic" are not directly 

compatible with most models. To address this, non-toxic messages were encoded as 0, and toxic messages were 

encoded as 1. This binary encoding was a critical transformation, enabling the models to interpret and process the 

toxicity labels effectively [17]. By carrying out these preprocessing steps—text cleaning, punctuation removal, stop 

word elimination, and label encoding the quality and consistency of the dataset were significantly enhanced. These 

transformations not only reduced unnecessary noise but also ensured the dataset was in a format suitable for advanced 

tasks like feature extraction and model training. The improved dataset formed the basis for the subsequent stages of the 

machine learning pipeline, including feature extraction and classification. These preprocessing techniques played a vital 

role in enabling the models to focus on essential aspects of the text data, ultimately facilitating accurate predictions and 

ensuring the development of a robust and reliable system for toxicity classification. 

 

C. Feature Extraction  

Once the dataset was cleaned and preprocessed, the next crucial step in the pipeline was feature extraction, which 

aimed to convert the textual data into a numerical representation suitable for machine learning and deep learning 

models. This was achieved using the Term Frequency-Inverse Document Frequency (TF-IDF) vectorization 

technique, a widely-used method in natural language processing (NLP) for transforming text data into numerical 

features while preserving the important characteristics of the text.  

 

The TF-IDF method works by assigning a weight to each word in the corpus, reflecting its relative importance within 

the context of the entire dataset. This approach involves two components: Term Frequency (TF) and Inverse 

Document Frequency (IDF). TF measures how often a term appears in a document, essentially quantifying the 

frequency of a word in the given text. IDF assigns higher weight to words that are less common across all documents in 

the dataset, effectively reducing the weight of words that appear frequently across multiple documents, as these are 

likely to be less informative in distinguishing between texts [18]. By combining these two measures, the TF-IDF 

vectorizer captures both the local significance of a word within a document and its global relevance across the entire 

dataset. The result is a sparse matrix where each row represents a document, and each column corresponds to a term, 

with the matrix values representing the TF-IDF weight for each term in each document. For the specific case of this 

study, the TF-IDF vectorizer was configured to extract the top 5,000 features from the text data. This selection was 

made to strike a balance between computational efficiency and the retention of critical information.  

 

While the TF-IDF technique can generate thousands of features, limiting the number of features to the most significant 

5,000 allowed for faster model training and reduced memory consumption, without sacrificing the model’s ability to 

capture the essential characteristics of the text. The selection of these top features was based on their importance in 

terms of both frequency within individual documents and their ability to distinguish between toxic and non-toxic 

messages across the dataset. This transformation allowed the system to focus on the most relevant terms that were 

likely to contribute meaningfully to the classification task. By prioritizing these important features, the classification 

models were able to operate more efficiently and effectively, placing greater emphasis on the words that carry the most 

discriminatory power. Additionally, the TF-IDF approach helped to eliminate redundant or less significant elements, 

further enhancing the model’s performance [19]. The resulting TF-IDF features were then used as input for the 

subsequent classification models, providing them with a refined and informative representation of the text data. This 

feature extraction process ensured that the models had access to a set of features that was both computationally 

manageable and rich in the information necessary for accurate prediction. By focusing on the most informative terms, 

the system was well-prepared to classify text messages as either toxic or non-toxic in a way that maximized predictive 

accuracy.  
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D. Model Selection and classification  

After preprocessing the dataset and extracting relevant features using the TF-IDF method, we proceeded to the critical 

step of model selection to classify messages as either toxic or non-toxic. For this task, two distinct approaches were 

chosen: a Logistic Regression model, representing traditional machine learning techniques, and a Long Short-Term 

Memory (LSTM) network, which is a deep learning approach designed to process sequential data [20]. The first model 

selected was Logistic Regression, which was chosen due to its simplicity, computational efficiency, and ability to 

handle high-dimensional data. Logistic Regression is a probabilistic model that estimates the likelihood of a sample 

belonging to a particular class (toxic or non-toxic) based on the features derived from the dataset. This model was 

particularly well-suited for this classification task because of its ability to quickly process large datasets while 

remaining computationally efficient. Given the high-dimensional nature of text data, which is represented by the TF-

IDF features, Logistic Regression was able to identify key distinguishing terms that helped classify messages 

effectively. To train the Logistic Regression model, the TF-IDF features were used, with the aim of representing the 

relative importance of each word within the dataset. The model was trained over 1,000 iterations, optimizing the 

weights to minimize the loss function and ensuring the best fit for the classification task. This approach allowed the 

model to efficiently classify messages as either toxic or non-toxic based on the learned features. While Logistic 

Regression provided a solid foundation for the classification task, it was limited in its ability to handle the context-

dependent and sequential nature of language, especially in the case of subtle or nuanced toxic expressions [21]. To 

address this limitation, we introduced a more advanced model based on Long Short-Term Memory (LSTM) 

networks. LSTMs, a type of Recurrent Neural Network (RNN), are particularly effective at learning dependencies 

within sequential data, making them well-suited for natural language processing tasks [22]. Unlike Logistic Regression, 

which treats each word as an independent feature, LSTMs are designed to capture the relationships between words and 

their context within the entire sequence, enabling them to better understand the flow of conversations and detect 

toxicity that may not be immediately obvious. Although the LSTM model demonstrated great potential in capturing the 

sequential nature of language, it faced challenges in generalizing to simpler cases where toxicity is more direct. 

However, its ability to grasp context-dependent toxicity in longer and more complex messages proved beneficial, 

highlighting its strength in identifying nuanced forms of harmful language that may require a deeper understanding of 

word sequences. 

 

IV. RESULTS AND DISCUSSION 

 

The performance of the proposed system was evaluated using two models: Logistic Regression and Long Short-Term 

Memory (LSTM). Their effectiveness was assessed using metrics such as accuracy, precision, recall, and F1-score, and 

the results were further analyzed using visual representations. Figures 2 and 4 illustrate the performance metrics of 

Logistic Regression and LSTM, respectively, while Figure 3 presents the confusion matrix for Logistic Regression. 

Figure 5 provides a side-by-side performance comparison of both models.  

A. Logistic Regression  

The Logistic Regression model showcased impressive performance in classifying messages as toxic or non-toxic. As 

seen in Fig. 2, the model achieved an overall accuracy of 79.9%. It demonstrated excellent results in identifying non-

toxic messages (Class 0), with a precision of 0.80, recall of 0.93, and F1-score of 0.86. This success highlights the 

model's ability to effectively classify the majority class, benefitting from the dataset's class distribution. 

 

 
 

Fig.2. Performance metrics of Logistic Regression 
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The confusion matrix for Logistic Regression, depicted in Fig. 3, provides a detailed visualization of the model's 

performance across different classes. The matrix highlights the model's ability to classify non-toxic messages (Class 0) 

with a high degree of accuracy, as evidenced by a significant number of true positives. This indicates that the model 

was highly effective in identifying the majority class, which is consistent with its high precision (0.80), recall (0.93), 

and F1-score (0.86) for non-toxic messages, as seen in Figure 2. Additionally, the matrix shows a low rate of false 

positives for non-toxic messages, further reinforcing the model's reliability in correctly identifying harmless content. 

However, the model's performance on toxic messages (Class 1) was comparatively less robust. The recall for toxic 

messages was 0.55, indicating that nearly half of the toxic messages were misclassified as non-toxic. This resulted in an 

F1-score of 0.65, reflecting a balanced measure of the model's precision and recall for the minority class. The confusion 

matrix underscores this challenge, revealing a noticeable number of false negatives for toxic messages, which points to 

the model's difficulty in recognizing subtle or context-dependent expressions of toxicity. These cases often involve 

nuanced language or implicit cues, which can be challenging for traditional machine learning models to interpret. 

Despite these limitations, Logistic Regression remains a computationally efficient and reliable model, particularly for 

handling high-dimensional data such as text represented by TF-IDF features [23]. Its straightforward implementation 

and quick training make it a valuable baseline model for tasks involving large datasets. The insights derived from the 

confusion matrix and performance metrics emphasize the importance of addressing the challenges associated with class 

imbalance and the detection of nuanced toxicity, which could further enhance the model's effectiveness. 

 

 
 

Fig.3. Confusion matrix for Logistic regression 

 

B. Long Short-Term Memory(LSTM)  

The LSTM model demonstrated its potential by leveraging its sequential data processing capabilities. As illustrated in 

fig.4, the model achieved an overall accuracy of 66%. Its performance for non-toxic messages (Class 0) was notable, 

with a precision of 0.66, recall of 1.00, and an F1-score of 0.79. These results highlight the LSTM's ability to capture 

patterns in sequential data, effectively reducing false negatives for non-toxic messages. 

 

 
 

Fig.4 Performance metrics of Logistic Regression 

 

While the LSTM model struggled with toxic messages (Class 1), where precision, recall, and F1-score were 0.00, this 

outcome primarily reflects the challenge posed by class imbalance in the dataset. Although the performance for toxic 
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messages was limited, the model's design for understanding context and dependencies provides a strong foundation for 

improvement. Refining the model with advanced embeddings or balancing the dataset could unlock its full potential.  

 

C. Comparative Analysis  

The comparison between the two models is thoroughly illustrated in Figure 5, which presents their performance metrics 

side by side, offering a clear perspective on their respective strengths and weaknesses. Logistic Regression emerged as 

a reliable baseline model, excelling in the classification of non-toxic messages and demonstrating effective handling of 

class imbalance within the dataset [24]. With a macro-average F1-score of 0.76, Logistic Regression significantly 

outperformed the LSTM model, which achieved a macro-average F1-score of 0.40. Additionally, the weighted F1-

scores, which account for the dataset's imbalanced distribution, further solidified the superiority of Logistic Regression, 

with a weighted F1-score of 0.79 compared to the LSTM model’s 0.52. This indicates that Logistic Regression 

consistently delivered strong performance across all evaluation metrics, particularly for the majority class of non-toxic 

messages  

 

However, despite these differences, the LSTM model showcased its unique strengths, particularly in understanding 

sequential patterns and contextual relationships within the data [25]. This capability is reflected in its high recall for 

non-toxic messages, which underscores its ability to capture the temporal and relational aspects of textual data. This 

contextual learning strength positions the LSTM model as a promising candidate for further improvements. 

Adjustments such as addressing class imbalance through techniques like oversampling the minority class, 

undersampling the majority class, or incorporating contextual embeddings like BERT could help the LSTM model 

realize its full potential [26].Such refinements may enable the LSTM model to achieve a better balance between 

precision and recall, especially for the minority class of toxic messages. 

 

 
 

Fig. 5. Performance Comparison of Algorithms 

 

D. Visual Analysis  

The visualizations offer crucial insights into the performance of both models. Fig. 2 highlights the robust performance 

of Logistic Regression for non-toxic messages, showcasing its ability to classify the majority class with high precision 

and recall. This visualization aligns with the confusion matrix in Fig. 3 which reveals Logistic Regression's success in 

minimizing false positives. However, the matrix also points to the model's limitations in identifying toxic messages, as 

evidenced by a noticeable number of false negatives. These false negatives suggest that while Logistic Regression 

excels in classifying straightforward cases, it struggles with the nuanced expressions of toxicity often present in the 

minority class.  

 

Fig. 4 emphasizes the LSTM model’s potential for learning sequential patterns and capturing contextual relationships in 

the data. This capability, while not fully optimized in the current implementation, highlights the model’s suitability for 

tasks requiring a deeper understanding of language flow and conversational context. Although the LSTM model 

achieved lower overall performance metrics compared to Logistic Regression, its high recall for non-toxic messages 

indicates its ability to generalize effectively for the majority class. This strength underscores the importance of 

leveraging sequential learning models like LSTM in scenarios where context plays a critical role in classification.  
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Finally, Fig. 5 provides a comprehensive comparative overview of the two models, clearly outlining their respective 

strengths and limitations. While Logistic Regression delivered superior overall performance, the LSTM model 

demonstrated complementary potential by excelling in areas that Logistic Regression struggled with, such as contextual 

understanding. This comparison suggests that combining the strengths of both models such as using Logistic 

Regression for baseline classification and augmenting it with the LSTM model’s sequential learning capabilities could 

lead to a more robust and nuanced classification system [27]. These insights underscore the need for tailored 

approaches to improve both models, ensuring they perform optimally in detecting toxicity in varied and complex 

datasets.  

 

V. FUTURE WORK 

 

To enhance the performance and effectiveness of the model in addressing toxic content, future work should focus on 

several key areas. One of the main challenges in toxicity detection is dealing with imbalanced datasets, which can be 

mitigated through techniques such as oversampling, under sampling, or synthetic data generation [28-30]. These 

strategies help ensure the model receives a balanced distribution of toxic and non-toxic samples, which is crucial for 

effective training. Additionally, fine-tuning the hyper parameters of the model can have a significant impact on its 

performance. Using optimization techniques like grid search or Bayesian optimization to adjust parameters such as the 

learning rate, number of layers, dropout rates, and batch size can improve the model’s ability to generalize and prevent 

over fitting, which can lead to better results on unseen data [31-33].  

 

Furthermore, incorporating advanced contextual embeddings such as BERT into the model can provide a deeper 

understanding of the nuances in text, allowing the model to better capture both explicit and implicit forms of toxicity. 

BERT’s ability to process entire sentences, considering both left and right contexts, makes it especially valuable in 

distinguishing between subtle and more overtly harmful content [34]. In addition, a hybrid approach combining the 

strengths of both LSTM and Logistic Regression models could provide a more robust solution. While LSTM networks 

excel at processing sequences and capturing long-term dependencies, Logistic Regression offers computational 

efficiency and effectiveness in linear classification. By combining these models, the system can take advantage of 

LSTM’s deep contextual understanding and Logistic Regression’s quick decision-making capabilities.  

 

Domain-specific model customization is also an important consideration. Toxicity manifests differently across various 

platforms, such as social media, online forums, and gaming communities. Fine-tuning the model to accommodate 

platform-specific language, jargon, and communication patterns could significantly improve its performance [35]. 

Another promising avenue is transfer learning, where pre-trained models like BERT are fine-tuned on a specific 

toxicity detection dataset. This approach leverages the existing knowledge in these pre-trained models, reducing the 

need for large amounts of training data and enabling the model to quickly adapt to new tasks.  

 

As the model is deployed in real-world scenarios, ensuring its decisions are interpretable becomes crucial. Techniques 

for model explain ability, such as attention mechanisms within the LSTM or using SHAP values, can help clarify the 

reasons behind the model’s classification, fostering trust and transparency [36]. Finally, continuous evaluation of the 

model on real-world data will be essential to adapt to evolving communication patterns and new forms of toxic content. 

Regular retraining with newly labeled data, as well as measuring performance using various metrics like precision, 

recall, and F1-score, will help strike the right balance between sensitivity and specificity, ensuring the model remains 

effective over time. Through these strategies, the model’s ability to detect both explicit and subtle toxic content will 

improve, making it more adaptable and reliable in a wide range of contexts.  

 

VI. CONCLUSION 

 

In conclusion, detecting toxic content on online platforms is a complex challenge that demands a balanced and multi-

faceted approach. This paper has demonstrated the potential of combining sequence-based models like LSTM with 

computationally efficient classifiers such as Logistic Regression to enhance detection capabilities. While LSTM models 

effectively capture contextual and sequential nuances, Logistic Regression provides reliability and speed for high-

dimensional data. Together, these approaches form a promising foundation for tackling both explicit and subtle forms 

of toxicity. The insights gained underscore the importance of addressing key challenges, such as class imbalance and 

the detection of nuanced toxic expressions, to further enhance model performance. Incorporating techniques such as 
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hyper parameter fine-tuning, domain-specific adaptations, and feedback loops can help ensure these systems remain 

robust and relevant in diverse applications. Equally critical is the emphasis on model explain ability and transparency, 

which are vital for fostering trust and fairness. Continuous evaluation and adaptation to real-world data will further 

solidify the effectiveness of toxicity detection systems. By combining technological advancements with ongoing 

refinements, it is possible to develop solutions that not only detect harmful content with greater precision but also 

contribute to creating safer and more inclusive online environments. The future of toxicity detection lies in sustaining 

these efforts and evolving alongside the changing dynamics of online communication.  
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