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ABSTRACT: The paper presents a innovative solution to the classic problem of adaptive traffic signal control (TSC), 

leveraging Artificial Intelligence instead of conventional optimization or basic rule-based methods. Reinforcement 

Learning (RL), a rapidly advancing field within Machine Learning, offers crucial advantages such as scalability, 

generalization, and real-time applicability for addressing traffic signal management challenges. However, these benefits 

also place greater responsibility on researchers to carefully design the state representation and reward system. The 
effectiveness of the RL algorithm largely depends on these abstractions, which determine whether it can successfully 

solve the problem. This study introduces a new approach to state representation and reward structure that enhances the 

generalizability and scalability of the TSC solution. The feasibility of the proposed method is validated through a 

simulation study using a high-fidelity microscopic traffic simulator. The results indicate that this Deep Reinforcement 

Learning-based approach is a strong contender for real-time traffic signal control. 

  
I. INTRODUCTION 

 

The rapid growth in population and urbanization has led to increasing traffic demands in cities worldwide. Traffic signal 

controls (TSCs) are implemented to manage traffic flow and reduce congestion at intersections. During periods of heavy 

traffic, vehicles often slow down or come to a stop in lanes, leading to longer queues of waiting vehicles. Congestion in 
a single lane can create a ripple effect, impacting traffic flow in other lanes and at adjacent intersections. Three primary 

factors contribute to worsening congestion. First, when the number of vehicles entering an intersection exceeds those 

leaving it, congestion builds up. Second, cross-blocking occurs when vehicles are unable to proceed through an 

intersection, even with a green light, because the downstream lane is already full. Lastly, green idling happens when a 

green signal is activated at an intersection with no vehicles present to take advantage of it. The application of Deep 

Reinforcement Learning (DRL) for traffic light control has been explored to a limited extent. Many researchers have 

employed Value-based algorithms in Single-Agent approaches, such as Deep Q-Learning and its on-policy variant 

SARSA However, compared to Policy-based methods, these approaches do not guarantee convergence, even to local 

optima, which can make them more prone to convergence issues during training and ultimately affect performance. 

Additionally, the majority of reward strategies used in these studies rely on low-level features like queue length, or do 

not incorporate traffic-related features at all (Thorpe and Anderson, 1996). This reliance on low-level features 

complicates the process of credit assignment and difficult the ability of the model to generalize effectively. 
 

II. SIGNIFICANCE OF DEEP REINFORCMENT LEARNING FOR TRAFFIC SIGNAL CONTROL 
 

The implementation of Deep Reinforcement Learning (DRL) has generated significant interest in the field of artificial 

intelligence, marked by several notable successes. In 2013, DeepMind showcased DRL's capabilities by applying it to a 

variety of Atari 2600 games, achieving superhuman performance. In 2016, the same organization used DRL to train 

AlphaGo, which went on to defeat multiple world champions in the game of Go. Since then, DRL has found applications 

across diverse domains, including robotics, natural language processing, healthcare, business management, Industry 4.0, 

smart grids, computer vision, and transportation, particularly in traffic signal control (TSC) and autonomous vehicles. 

 

Given these advancements, this article reviews the limited research on DRL in TSC, driven by the objective of developing 
solutions that exceed human intelligence. The advantages of DRL make it particularly appealing for traffic signal 

management, as outlined below: 
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 Adaptability to Real-Time Conditions: DRL enables agents to respond to real-time traffic situations that can change 

unpredictably due to unforeseen events like adverse weather or accidents. 

 Model-Based and Model-Free Approaches: DRL can operate using either a model-based or model-free framework, 

allowing agents to learn autonomously without needing prior knowledge of the environment. The model-based 

approach involves creating a model of the operational environment to select actions based on feedback, while the 

model-free approach bypasses the creation of a model. The latter is often preferred for TSC due to its lower 

complexity and reduced computational requirements. 

 Comprehensive Reward Representation: DRL allows for reward structures that align with system goals and 

performance metrics, incorporating various factors influencing system performance. For instance, rewards can be 

adjusted based on average waiting times, queue lengths, or vehicle throughput at intersections. 

 Addressing the Curse of Dimensionality: DRL effectively mitigates the curse of dimensionality that traditional 
reinforcement learning approaches face, especially in TSC, where the state space is extensive due to the multitude 

of factors influencing a traffic network. 

 
III. REINFORCEMENT LEARNING 

 

Reinforcement Learning (RL) is a dynamic and extensively studied area within Machine Learning (ML), recognized for 

its significant achievements in various domains such as board games , robotics (), and video games Unlike Supervised 

Learning (SL), which focuses on mapping input x to output y using training samples, RL operates on a different learning 

paradigm. One of the main challenges of SL is the continuous demand for training data, which is often unavailable in 

many control scenarios. In contrast, RL creates its own training data by interacting with the environment in real-time.  

 

Reinforcement Learning (RL) is a prominent area of research within Machine Learning, characterized by its ability to 
enable agents to learn from interactions with their environment. Unlike Supervised Learning, which requires labeled 

training data to map inputs to outputs, RL allows agents to generate their own training data through trial and error. This 

learning process is typically modeled as a Markov Decision Process (MDP), where the agent strives to maximize 

cumulative rewards by following a policy. The total reward is calculated over time, factoring in a discount rate that 

prioritizes immediate rewards over future ones. During each interaction, the agent observes the current state of the 

environment, selects a action based on its policy, and receives feedback in the form of a reward, which informs its future 

decisions. This reward system acts as a crucial guiding principle for the agent, helping it refine its policy to achieve 

optimal performance. 

 

IV. POLICY GRADIENT ALGORITHM 
 
The Policy Gradient algorithm is a fundamental approach in Reinforcement Learning that focuses on optimizing the 

policy directly than relying on value functions. This method works by parameterizing the policy, typically as a neural 

network, which outputs a probability distribution over possible actions given a specific state. The objective of the Policy 

Gradient algorithm is to maximize the expected cumulative reward by adjusting the parameters of the policy based on 

the feedback received from the environment. During training, the algorithm collects trajectories of states, actions, and 

rewards, using these experiences to compute gradients that indicate how to adjust the policy parameters. This adjustment 

is often achieved through techniques such as the REINFORCE algorithm, which applies the gradient ascent method to 

update the policy in the direction that increases the likelihood of actions leading to higher rewards. By iteratively refining 

the policy through these updates, the Policy Gradient algorithm can effectively learn complex behaviors in dynamic 

environments, making it particularly useful for problems with high-dimensional action spaces. 

 

V. ENVIRONMENT 
 

The problem addressed in this study is Traffic Signal Control (TSC) at a simple intersection, where vehicles can approach 

from all four directions, with one lane designated for each direction. For the sake of simplicity, left turns are excluded, 

allowing vehicles to either turn right or proceed straight out of the network. The training environment is simulated using 

SUMO (Simulation of Urban Mobility) (Lopez et al., 2018), which is an ideal platform for this type of modeling. SUMO 

supports both real-world transportation networks and synthetic environments, offering extensive customization and 

scalability options. Additionally, it features an excellent Python interface known as TraCI, which is essential for Deep 
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Reinforcement Learning applications since many development tools and libraries, such as TensorFlow, PyTorch, and 

Keras, are built in Python. Figure 1 illustrates the integration of SUMO into the proposed RL training loop, highlighting 

how the environment is structured within SUMO and controlled through the Python training framework via TraCI. 

 

 
The Python training loop is structured to comply with OpenAI Gym standards, allowing the agent's decisions to be 

translated into TraCI commands through the Python environment. These commands then initiate modifications in the 

SUMO infrastructure. The changes are monitored by TraCI, which collects relevant data and presents it back to the 

Python environment to accurately represent the state of the infrastructure to the agent. 

 
Deep Reinforcement Learning (DRL) offers significant advantages, including real-time applicability, generalization, and 

scalability, which enable the trained neural network to effectively handle previously unseen scenarios. While a great deal 

of focus is placed on the algorithms to achieve high levels of generalization and scalability, the importance of the state 

vector that conveys the environment's conditions to the agent should not be overlooked. This aspect of DRL is critical 

for the algorithm's ability to assign credit, or determine how different pieces of information impact the decision-making 

process. Therefore, the design of the control task's abstraction is essential for developing a scalable and generalizable 

solution. 

 

Consequently, state representation is one of the most vital elements, as the clarity and precision of the state descriptor 

directly affect the success of the training process. Moreover, the responsibility for crafting the state descriptor lies entirely 

with the researcher, meaning that the outcome heavily relies on their understanding of the control problem's abstraction. 
Similarly, careful consideration must also be given to the design of the reward signal in DRL, as it serves as the sole 

guide for the agent in identifying optimal behavior. In this paper, we aim to develop a state vector and reward scheme 

for the TSC problem that are easily generalizable and possess strong scalability potential. 

 

VI. STATE 
 

Image state representations are prevalent in traffic signal control problems. Many researchers prefer Discrete Traffic 

Signal Encoding (DTSE), in which each lane at an intersection is segmented into cells that extend from the end of the 

lane. The size of these cells is determined by the average length of vehicles. Each cell is populated with various types of 

data, such as speed, acceleration, vehicle position, and signal phase. This structured data can then be input into a 

Convolutional Neural Network (CNN) with ( n ) channels, where each cell functions like a pixel and ( n ) represents the 

different types of information contained in each cells.  
 

Another common representation is the use of raw RGB images, which can incorporate roadside information that may be 

beneficial in certain scenarios. Alternatively, feature-based value vectors are frequently employed for state representation. 

In this approach, each lane is characterized by a set of values that might include phase duration, average speed, cumulative 

waiting time, phase cycle, and queue length. The primary advantage of this method is that the necessary data can be easily 

obtained from the intersection using loop detectors or road sensors. 
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In this study, we adopt a feature-based approach that includes a single value for each lane: the count of vehicles currently 

present in that lane. This measure differs from the queue length, which is often the standard feature used in TSC state 

representations. Estimating the queue length accurately can be challenging, and it tends to provide delayed information 

regarding the lane's traffic load. By contrast, our chosen value offers a direct reflection of the current traffic load on each 

lane, allowing for more immediate decision-making related to traffic signals. To improve the training process and mitigate 

issues related to vanishing and exploding gradients, these vehicle counts are normalized to a range of [0, 1]. This 

straightforward relationship between vehicle count and traffic load makes it easier to inform traffic light management 

decisions. 

 

VII. ACTION 
 

In the established SUMO infrastructure, traffic can enter from four lanes at the intersection, where vehicles are permitted 
only to turn right or proceed straight out of the network. For this setup, we employ a simple discrete action framework 

consisting of two distinct actions. The first action activates the traffic signal for the horizontal lanes, turning them green 

while the vertical lanes are set to red; this configuration is referred to as North-South Green (NSG). The second action 

reverses this arrangement, turning the horizontal lanes red and the vertical lanes green, known as East-West Green 

(EWG). It is also essential to note that the selected traffic signal configuration remains unchanged for a duration of 5 

seconds, as measured by SUMO's internal clock. Only after this period can the agent make a new selection for the traffic 

signals. 

 

VIII. TRAINING 
 

Training a traffic signal control system (TSC) involves a systematic approach to develop and refine algorithms that can 
optimize traffic flow at intersections. Initially, the training process begins by simulating a traffic environment, often using 

platforms like SUMO, where various traffic scenarios are generated to reflect real-world conditions. The TSC algorithm 

interacts with this simulated environment by making decisions based on the current state of traffic, which includes factors 

like vehicle counts, speeds, and waiting times. As the algorithm executes actions, it receives feedback in the form of 

rewards or penalties, which inform it about the effectiveness of its decisions. This feedback is crucial for adjusting the 

algorithm's parameters and improving its performance over time. Techniques such as reinforcement learning are 

commonly employed, allowing the TSC system to learn from trial and error, thereby enhancing its ability to adapt to 

dynamic traffic conditions. The ultimate goal of this training process is to create a robust TSC that can efficiently manage 

traffic flow, reduce congestion, and improve overall safety at intersections. 

 
IX. LIMITATION 

 
Traffic signal control systems (TSC) face several limitations that can affect their effectiveness and adaptability. One 

significant challenge is their reliance on fixed-time or pre-timed signal plans, which may not adequately respond to 

dynamic traffic conditions, leading to inefficiencies and increased congestion. Additionally, many traditional TSC 

systems lack the ability to incorporate real-time data, such as unexpected traffic patterns or incidents, which can hinder 

their responsiveness to changing circumstances. Furthermore, the complexity of urban environments, with varying traffic 

volumes and behaviors, can complicate the implementation of TSC algorithms, making it difficult to achieve optimal 

performance across different scenarios. Moreover, the integration of advanced technologies, such as artificial intelligence 

or machine learning, often requires substantial infrastructure investments and can pose challenges in terms of data privacy 

and security. These limitations highlight the need for more adaptive and intelligent traffic management solutions to 

improve overall traffic flow and safety. 

 

X. CONCLUSION 
 

In conclusion, the integration of reinforcement learning (RL) and the Policy Gradient algorithm in traffic signal control 

systems (TSC) offers a promising approach to address the complexities of managing urban traffic flow. By utilizing RL, 

TSC can dynamically adapt to real-time traffic conditions, learning optimal control strategies through interactions with 

the environment. The Policy Gradient algorithm, in particular, enhances this adaptability by enabling the direct 

optimization of the traffic control policy, allowing for the effective handling of high-dimensional action spaces and 
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complex state representations. This combination not only facilitates improved traffic management but also enhances the 

system's ability to generalize across different scenarios, making it a scalable solution for diverse urban environments. As 

the research progresses, the implementation of these advanced techniques is expected to lead to significant improvements 

in traffic efficiency, reduction of congestion, and overall enhancement of road safety, paving the way for smarter and 

more responsive traffic management systems. 
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