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ABSTRACT: Hepatocellular carcinoma (HCC) is a prevalent and aggressive form of liver cancer that arises from 

both viral factors, such as hepatitis infections, and non-viral factors, including fatty liver disease. Accurate diagnosis of 

HCC is vital for effective treatment and management; however, traditional diagnostic techniques like imaging and biop-

sies have inherent limitations. These methods often struggle with precision due to overlapping clinical and imaging fea-

tures between viral and non-viral HCC, increasing the risk of misdiagnosis. To address this challenge, the project ex-

plores a machine learning-based approach to develop a diagnostic tool capable of accurately distinguishing between 

viral and non-viral HCC cases. Utilizing a balanced dataset from Kaggle, machine learning techniques like the Logistic 

Regression (LR), a random forest (RF), decision- tree (DT)and Stacking Classifier are employed to analyze and classify 

the data effectively. These models are trained and evaluated to ensure their accuracy in identifying HCC types, leverag-

ing the ability of machine learning to process extensive datasets and deliver consistent results. Machine learning offers 

significant improvements over traditional diagnostic methods by enhancing the diagnostic process and reducing the like-

lihood of human error. This approach ensures greater precision and reliability, enabling personalized treatment strate-

gies. The proposed system addresses the limitations of existing methods by improving diagnostic accuracy, streamlining 

workflows, and supporting informed clinical decision-making. By providing consistent and dependable results, this ma-

chine learning-driven diagnostic tool holds the potential to significantly improve patient outcomes and facilitate more 

effective treatment strategies for HCC.[1] 

 

KEYWORDS: Hepatocellular carcinoma, Machine learning, Diagnostic tool, Decision Tree, Random Forest, Lo-

gistic Regression, Stacking Classifier, Diagnostic accuracy. 

 

I. INTRODUCTION 

 

One major global health concern is hepatocellular carcinoma (HCC) characterized by its varied etiology, including 

viral and non-viral origins, and its profound impact on liver function and patient prognosis. HCC severely affects indi-

viduals by compromising liver function, leading to complications such as jaundice, ascites, and hepatic encephalopathy, 

which ultimately result in a decline in quality of life. Early detection and intervention in HCC are crucial for improving 

patient outcomes. Timely diagnosis allows for rapid access to treatment and support services, enabling individuals and 

their families to better manage disease progression and optimize therapeutic strategies. Recent advancements in machine 

learning have revolutionized HCC diagnostics, offering new approaches to accurately classify the disease into viral and 

non-viral categories. By leveraging a comprehensive and balanced dataset, this project aims to apply cutting-edge ma-

chine learning Identify the best way to differentiate between these two forms of HCC. A thorough analysis of the most 

recent developments in machine learning-based methods for HCC detection and classification systematically evaluates 

the performance of various algorithms to identify the most effective methodologies. The algorithms used include Deci-

sion Tree (DT), which utilizes a tree-structured model to classify data and enable clear visualization of decision-making 

processes; Random Forest (RF), which, by averaging several predictions, uses an ensemble of decision trees to increase 

accuracy and decrease overfitting. Its capacity to manage big datasets and intricate relationships allows it to predict 

HCC categorisation with high accuracy.Logistic Regression (LR), which models binary outcomes using a logistic func-

tion and provides probabilistic interpretations of classification, being simple and interpretable but may not perform as 

well as more complex models in capturing non-linear relationships; and Stacking Classifier, which combines multiple 

algorithms to improve overall performance through meta-learning techniques and can leverage the strengths of various 

models but may require extensive computational resources and careful tuning. Our study aims to contribute to undertake 

continuous initiatives to enhance machine learning-based early HCC detection and categorisation. By assessing how 

well cutting-edge algorithms perform on actual datasets, we aim to provide a reliable, data-driven approach that supports 
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personalized treatment strategies. We further explore the potential implications of our findings for clinical practice, in-

cluding the development of automated diagnostic tools and more targeted therapies. The project seeks to overcome cur-

rent limitations in diagnostic accuracy, with the goal of lowering misclassification rates and enhancing patient care in 

general. Using the strength of sophisticated machine learning methods and thorough data analysis, we strive to revolu-

tionize HCC diagnosis and treatment. Our ultimate goal is to provide healthcare professionals with the tools and insights 

needed to effectively combat this challenging liver cancer, contributing to better clinical outcomes and improved patient 

care.[2] 

 

II. LITERATURE REVIEW 

 

2.1 Related Work 

Several studies have explored Ninety percent of liver tumours are hepatocellular carcinomas (HCCs), the most preva-

lent type of liver cancer and a major cause of death globally. Imaging is essential for monitoring and HCC diagnostic 

criteria, and early detection is critical. Various imaging modalities, including conventional ultrasound, multiphase CT, 

MRI, contrast-enhanced ultrasound (CEUS), CT and MR perfusion, elastography, T1 mapping, diffusion-weighted 

imaging (DWI), and MR spectroscopy, are essential for detecting and characterizing HCC. Emerging advanced imag-

ing techniques like radiogenomics/radiomics aim to integrate quantitative radiologic data with clinical and immunobi-

ological characteristics to improve prognosis and treatment outcomes. These advancements in imaging significantly 

contribute to the improved diagnosis and management of HCC, ultimately leading to better patient care[3]. 

 

2.2 Algorithmic Approaches 

In the context of classifying Hepatocellular Carcinoma (HCC) into viral or non-viral categories, we employ models like 

Decision Tree, Random Forest, Logistic Regression, and Stacking Classifier. After evaluating these models, Random 

Forest was identified as having the highest classification performance. These models analyze preprocessed text data 

and user-provided inputs to distinguish between viral and non-viral HCC, enhancing diagnostic accuracy and informing 

personalized treatment strategies [4]. 

 

2.3 Datasets and Applications 

To train robust machine learning models for the classification of Hepatocellular Carcinoma (HCC) into viral or non-

viral categories, high-quality datasets are essential. We utilized a publicly available dataset containing various medical 

parameters for HCC research, which has been extensively used in related studies. However, the dataset's limited size 

and diversity present challenges for the generalization of the model. To address this issue, we explored data augmenta-

tion techniques to enhance the dataset, although further validation of these techniques is necessary[5]. 

 

2.4 Performance Metrics 

Metrics including accuracy, precision, recall, and F1-score are typically used to assess performance when classifying 

hepatocellular carcinoma (HCC) into viral or non-viral groups.It is crucial to consider computational efficiency, espe-

cially for real-time applications, to ensure timely and accurate diagnostics. Emphasizing the need for robust evaluation 

frameworks is essential to guarantee reliable and reproducible results [6]. 

 

2.5 Research Gap 

Despite significant progress, existing methods for classifying Hepatocellular Carcinoma (HCC) into viral or non-viral 

categories face several challenges, including low accuracy, high computational costs, and reliance on large, annotated 

datasets. This research aims to address these limitations by lev eraging models such as Decision Tree, Random Forest, 

Logistic Regression, and Stacking Classifier. Our approach is optimized for analyzing preprocessed text data and user-

provided inputs, enhancing diagnostic accuracy and supporting personalized treatment strategies [7]. 

 

III. METHODOLOGY 

 

The methodology for this project centers around developing a machine learning-based algorithm to classify Hepatocel-

lular Carcinoma (HCC) into viral or non-viral categories. The approach involves utilizing various models, including 

Decision Tree, Random Forest, Logistic Regression, and Stacking Classifier. The methodology is divided into three key 

sections: Existing Algorithms, Proposed Algorithms, and Data Processing. Each section is thoroughly detailed, includ-

ing relevant formulas, tables, and visualizations, to provide a comprehensive understanding of the approach.[8] 
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3.1. Existing Algorithm 

The existing algorithms for Hcc rely on imaging techniques, biopsy results, and clinical evaluations. These methods, 

while established, often face challenges in accurately differentiating between viral and non-viral HCC. Traditional 

systems may exhibit limitations such as subjective interpretation of imaging results, variability in biopsy outcomes, and 

the potential for misdiagnosis due to overlapping clinical features.[9] 

 

The limitations of existing algorithms can be summarized as follows: 

Subjective interpretation: Diagnostic results can be influenced by individual radiologists' and pathologists' 

interpretations. 

Variability: Different diagnostic methods and clinicians may yield inconsistent results. 

Misdiagnosis: There is a risk of incorrect classification of HCC types, leading to inappropriate treatment. 

Limited precision: Traditional methods may lack the accuracy needed to reliably differentiate between viral and non-

viral HCC. 

Overlap: Clinical and imaging features of viral and non-viral HCC may be similar, complicating accurate diagnosis. 

 

 

 
3.2. Proposed Algorithms 

The proposed device goals to enhance HCC analysis by utilising machine learning algorithms to accurately classify 

hepatocellular carcinoma into viral and non-viral classes. This Utilising a balanced dataset from Kaggle, the system 

compares and assesses the efficacy of Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), and a 

Stacking Classifier. Preprocessing the data, training several models, and evaluating each model's performance using 

metrics like accuracy, precision, recall, and F1-score are all part of the system. The very last output will be a strong 

category device that integrates the quality-performing version, presenting clinicians with a dependable and unique 

method for differentiating between viral and non-viral HCC cases. By automating the diagnostic process, the system 

aims to reduce human error, improve diagnostic accuracy, and facilitate personalized treatment strategies for pa-

tients.[10] 

 

 
 

Figure 1:System Architecture of HCC Classification 
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3.2.1 Random Forest Architecture 

Random Forest is a type-classification and regression ensemble mastering order. In order to increase predicted accuracy 

and robustness, it builds several decision trees during training and aggregates their results.The algorithm follows the 

principle of bagging (Bootstrap Aggregating) to enhance model generalization and reduce overfitting.[11] 

 

Construction of Random Forest: 

Given a dataset The formula D={(X1,Y1),(X2,Y2),...,(Xn,Yn)} \{(X_1, Y_1), (X_2, Y_2),..., (X_n, Y_n)\} represents 

D. The random forest mode list constructed follows: D={(X1,Y1),(X2,Y2),...,(Xn,Yn)}, where Xi stands for the input 

features and YiY_iYi for the target labels. 

 

Bootstrap-Sampling: Create m bootstrap samples D1,D2,...,DmD_1, D_2, ..., D_mD1,D2,...,Dm by randomly sam-

pling DDD with replacement. Each sample is used to train an individual decision tree: 

Decision Tree Learning: Each decision tree 𝑇𝑗 (where j=1,2,...,m is trained independently on 𝐷𝑗  At each node of a tree, 

a random subset of features is selected to determine the best split.  

 

2. For classification: Classification: the final output is determined by the majority vote among all trees.  

         𝑌^ = 𝑎𝑟𝑔𝑘𝑚𝑎𝑥 ∑ 1𝑚𝑗=1 (𝑇𝑗(𝑋) = 𝑘)[12] 

 

 
 

Figure.2 Random Forest Architecture 

 

3.2.2 Decision Tree Architecture: A decision tree is an approach for supervised learning that may be applied to tasks 

involving both regression and classification. It creates a tree-like structure by dividing the dataset into smaller subsets 

according to feature conditions.[13] 

Structure of a Decision Tree 

1. Root node: denotes the starting point and the complete dataset. 

2. Internal Nodes: Stand in for feature-based judgement. 

3. Branches: Indicate possible outcomes of a decision. 

4. Leaf Nodes: constitute final predictions (magnificence labels or numerical values). 
 

Mathematical Formulation: 

 At each node, the best feature X_i is selected based on an impurity criterion. 
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 For Classification:  

• Gini Impurity:  

Gini = 1-∑ 𝑝𝑖2𝑐𝑖=1  

 

• Entropy: 

         H= − ∑ 𝑝𝑖 log2 𝑝𝑖𝑐𝑖=1   

 

 
 

Figure.3 Decision Tree Architecture 

 

3.2.3Logistic Regression: A statistical and knowledge-gathering approach for binary and multi-class category prob-

lems is called logistic regression. It calculates the likelihood that the internal nodes provide feature-based assessments 

that use the sigmoid function to determine if input belongs to a specific class.[14] 

Mathematical Formulation 

For a given input X with features 𝑥1, 𝑥2, ⋯ 𝑥𝑛the model computes a weighted sum of the features: 

Z=𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛   

 

where: 

• z is the linear sum of inputs xi and weights wi. 

• The bias term (intercept) is w0. 

An output between 0 and 1 is obtained by applying the logistic function (sigmoid) to z: 

 

    σ(z)=1/1 + 𝑒−𝑧 

 

where σ(z) is the probability of the positive class P(Y=1∣X) 

For classifications, we set a decision boundary: 

• Classify it as 1 (positive class) if σ(z)≥0.5  
   and as 0 (negative class) if σ(z)<0.5. 
 

3.2.4 Stacking Classifier: stacking classifier is an ensemble learning technique that improves predictive accuracy by 

combining a few basic models. In contrast to boosting (like X-GBoost) or bagging (like Random Forest), stacking uses 

a meta-learner, also known as a blender, to learn how to combine multiple models. 

Mathematical Representation 

Let X be the input features and Y be the target labels. 

1. Base models 𝑓1, 𝑓2, ⋯ 𝑓3 generate predictions: 𝑃1 = 𝑓1(𝑋), 𝑃2 = 𝑓2(𝑋), 𝑃𝑛 = 𝑓𝑛(𝑋) 

 

2. These predictions become the new feature set for the meta-learner g: 𝑌𝑓𝑖𝑛𝑎𝑙 = 𝑔(𝑃1, 𝑃2, ⋯ 𝑃𝑁)  

 

where g is the meta-classifier, which learns how to best combine predictions. 
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Figure.4 Stacking Classifier Architecture 

 

3.3. Mixed Precision Training 

To enhance the efficiency and performance of machine mastering algorithms together with Random forest, decision 

Tree, Logistic Regression, and Stacking Classifier, mixed precision training can be applied. This approach leverages 

16-bit floating-point numbers (float16) for specific computations to reduce memory usage and speed up training while 

maintaining accuracy. It is particularly effective when optimizing hyperparameters, allowing for faster tuning and im-

proved scalability, especially on GPUs.[15] 

 

The following formula can be used to summarise the mixed precision training process: 𝑦 ̂ = 𝑓(𝑥; 𝜃_16 )   𝜀𝑞 (1) 𝛻_(𝜃_16 ) 𝐿 = 𝜕𝐿/(𝜕𝜃_16 )   𝜀𝑞 (2) 

 𝜃_32 = 𝜃_32 − 𝜂∇𝜃_16          𝜀𝑞 (3) 

Where: 

 

• 𝑦 ̂ is the predicted output of the algorithm. 

• 𝑓(𝑥; 𝜃_16 )represents the forward pass with 16-bit precision for computation. 

• 𝛻_(𝜃_16 ) 𝐿 is the loss function's gradient in relation to the 16-bit weights.. 

•  𝜃_32represents the 32-bit weights used for the weight update. 

• n is the learning rate 

 

3.4. Model Evaluation 

To evaluate the algorithm's overall performance, a test dataset with scientific inputs in.csv format is used. The evalua-

tion measures, such as accuracy, precision, recall, and the F1 score, are calculated using the following mathematical 

formulas: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)        

 

Where: 

• TP stands for True Positives 

• TN for True Negatives 

• FP for False Positives 

• FN for False Negatives 

The classification file and confusion matrix are also produced in order to provide a thorough analysis of the model's 

overall performance. 

 

3.5. Data Processing 

3.5.1. Dataset Description 

The HCC dataset consists of 204 samples with 50 functions, categorized into 34 numerical and sixteen categorical 

variables. The target variable, "Class", shows the presence of Hepatocellular Carcinoma (HCC).The dataset includes 
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medical attributes such as age, liver function markers (ALT, AST, ALP), viral infection markers (HBsAg, HCVAb), 

and lifestyle factors (smoking, alcohol consumption). Some numerical values are stored as strings with commas instead 

of decimal points, requiring preprocessing. Additionally, the dataset is imbalanced, meaning the number of samples in 

each class varies, which may impact model performance. To ensure effective training and evaluation, the dataset needs 

cleaning, feature transformation, and handling of imbalances.[16] 

 

Table 3.1 Dataset 

 

Dataset Viral HCC Cases Non-Viral HCC Cases  Total Cases 

Training 81 81 162 

Validation 10 10 20 

Test 11 11 22 

 

 

Figure.5 Sample image of Training 

 

The dataset sample images used for implementing the algorithms. 

 

Figure. 6 Sample image of Validation 

 



© 2025 IJIRCCE | Volume 13, Issue 3, March 2025|                                     DOI: 10.15680/IJIRCCE.2025.1303096 

 
 

IJIRCCE©2025                                                      |     An ISO 9001:2008 Certified Journal   |                                                    2568 

 
 

Figure.7 Sample image of Testing 

 

3.5.2. Data Augmentation and Preprocessing 

To enhance the version's performance on the HCC dataset, numerous information preprocessing techniques are carried 

out to beautify generalization and reduce overfitting. These techniques ensure that the model learns robust patterns, 

even with limited and imbalanced data. Since the dataset consists of numerical and categorical medical records rather 

than images, preprocessing involves data normalization, feature scaling, and augmentation strategies like synthetic data 

generation. 

The preprocessing pipeline can be summarized as follows: 

1. Handle Missing Values: Identify and fill missing values using median imputation for numerical features and 

mode imputation for categorical features. 

2. Convert Categorical Data: Encode express variables the usage of one-warm encoding or label encoding as 

needed. 

3. Normalize Numerical Features: Scale continuous numerical features to a standard range (0,1) using Min-

Max Scaling or Standardization for better convergence during training. 

4. Handle Class Imbalance: To ensure balanced model learning, create synthetic samples for under-represented 

classes using the Synthetic Minority Over-sampling Technique (SMOTE). 

5. Feature Selection: Remove irrelevant or highly correlated features to reduce dimensionality and improve 

computational efficiency.[17] 

 

3.5.3. Data Loading and Batching 

To guarantee effective training and ideal model performance, the HCC dataset—which is saved in a.csv file—is loaded 

and pre-processed. The dataset is first read into a pandas Da-taFrame, where the mode is used to impute values into 

categorical columns and the median is used to fill in missing values in numerical columns. In order to ensure interoper-

ability with device learning models, categorical features, such gender, are encoded using Label Encoding or One-hot 

Encoding. Min-Max Scaling is used to normalise numerical features to a 0–1 range in order to increase training stabil-

ity. 

 

Stratified sampling is then used to preserve class distribution while the dataset is divided into training (80%), validation 

(10%), and test (10%) sets. The statistics are similarly batched into agencies of 32 samples to optimise computational 

performance, lowering reminiscence load and increasing processing velocity. When training machine learning models 

like Random Forest, Decision Tree, Logistic Regression, and Stacking Classifier, this systematic pipeline guarantees 

that the dataset is clear, well-structured, and processed effectively.[18] 
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IV. OUTCOMES AND DEFINITIONS 

 

 

Figure.8 Index Page 

 

The following image output shows the register page where user has to give basic information 

 

Figure.9 Register Page 

 

The below page shows the dataset values used for training and testing the algorithms. 

 

                     

Figure.10 Upload Dataset 

 

This page indicates what inputs has to given by user to predict the HCC is Viral or Non-Viral.  
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Figure 11. Prediction page 

 

This page provide Results from collecting information for predicted page. 

   

Figure 12. Results 

 

 4.1 Output Graphs and Visualizations 

To monitor the model's performance, accuracy and loss curves are plotted for both training and validation phases. Ad-

ditionally, a confusion matrices, ROC and AUC curves and classification report are generated to evaluate its effective-

ness on the test dataset. 

 

• ROC and AUC Analysis: The ROC curves for multiple models are plotted to compare their performance in 

distinguishing between classes. The AUC (Area Under the Curve) scores indicate the effectiveness of each 

model, with higher values representing better classification capability. The Stacking Classifier achieves the 

highest AUC (0.97), followed by Random Forest (0.98), Decision Tree (0.71) and Logistic Regression (0.83). 

The best model for classification is chosen with the aid of this analysis.[19] 

 

 

Figure13. ROC and AUC Plot 
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The below Bar-Graph represents the Accuracy Comparision of All Model’s.  

 

 
 

Figure 14 Accuracy 

 

• Confusion Matrices: displays the proportion of accurate and inaccurate predictions for every class. 

 

 
 

The Above Figure Show’s the Confusion Matrix of Random Forest. 

 

 
 

The Above Figure Show’s the Confustion Matrix of Decision Tree. 
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The Above Figure Show’s the Confustion Matrix of Stacking Clasifier. 

 

 
 

The above Figure Shows the Feature Selection, where it used as input by the User to Predict the New Value.  

 

• Model’s Comparison For Classification: 

 

Table 4.1 Classification Report: 

 

Model Precision Recall 
F1-

Score 
Accuracy 

Random Forest 0.99 0.90 0.91 0.92 

Logistic Regres-

sion 
0.75 0.75 0.75 0.75 

Decision Tree 0.76 0.65 0.70 0.70 

Stacking Classifier 0.90 0.85 0.87 0.90 

 

The proposed algorithm leverages the Random Forest architecture, showcasing its superior predictive capability 

through ensemble learning, which reduces overfitting and enhances accuracy. Designed to process structured input 

data, it is highly effective for analyzing medical and clinical datasets. By incorporating automated feature selection and 

hyperparameter tuning, the algorithm eliminates the need for manual preprocessing, optimizing the classification pro-

cess. Additionally, a Flask-based web application is implemented, allowing users to input data and receive real-time 

predictions using the Random Forest model. This approach ensures a scalable, efficient, and reliable solution for medi-

cal data analysis, leading to improved decision-making and predictive accuracy.[20] 

 

V. CONCLUSION 

 

In summary, a major breakthrough in oncology has been made with the creation of a machine learning-based diagnostic 

paradigm for differentiating between viral and non-viral hepatocellular carcinoma (HCC). Our work methodically as-

sesses the performance of several classification algorithms, such as Decision Tree, Random Forest, Logistic Regres-

sion, and a Stacking Classifier, by utilising a comprehensive and balanced dataset. The results demonstrate that ma-

chine learning techniques can enhance diagnostic accuracy beyond traditional methods, offering clinicians a robust tool 
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for differentiating HCC types. This differentiation is crucial for tailoring personalized treatment plans, thereby improv-

ing patient management and outcomes. The findings underscore the potential of machine learning to transform diagnos-

tic approaches in liver cancer, paving the way for more effective interventions and improved survival rates. Future 

work should focus on integrating these models into clinical workflows and exploring additional features that may fur-

ther enhance predictive capabilities in HCC diagnosis.[21] 

 

VI. FUTURE SCOPE 

 

Future enhancements of the machine learning-based diagnostic paradigm for hepatocellular carcinoma (HCC) could 

focus on several key areas. Firstly, integrating additional features such as genomic, proteomic ,Incorporating clinical 

data could enhance classification accuracy and offer a more thorough knowledge of the illness. Implementing advanced 

algorithms, such as deep learning techniques and ensemble methods beyond stacking, could further enhance predictive 

performance. Additionally, employing techniques like transfer learning could leverage pre-trained models on larger 

datasets, reducing the need for extensive labeled data.Collaboration with medical professionals for real-world valida-

tion and feedback will be essential to refine the models and ensure clinical applicability. Moreover, developing user-

friendly interfaces for healthcare practitioners can facilitate the integration of this tool into clinical workflows. Lastly, 

exploring the implementation of real-time monitoring systems and incorporating patient demographics and lifestyle 

factors could help in personalizing treatment strategies and improving patient outcomes in HCC management.[22] 
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