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ABSTRACT: This paper proposes a new cosegmentation approach that can detect common objects across a set of 

images based on intra- and inter-image relationships. Histogram matching, which facilitates region-to-region 

comparison between images, is integrated with a half-integrality-based optimization framework to achieve efficient 

computation. Histogram matching provides an efficient tool for feature detection shared by several images, and half-

integrality guarantees speed along with optimal segmentation quality. Benchmarking experimental results also show 

that the proposed method yields better performance and superiority over state-of-the-art algorithms in terms of 

segmentation accuracy and efficiency. The presented technique provides large improvements, thereby making it highly 

promising for many applications in image processing as a cosegmentation technique. 

 

KEYWORDS: Image Co-Segmentation, Adaptive Clustering, Noise Sensitivity, Half Integrality, Super pixels, Multi-
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I. INTRODUCTION 

 

There are recent studies that suggest a number of approaches to improve FCM-based segmentation algorithms. For 

instance, Zeyu et al. proposed an FCM model based on super pixel merging and multi-feature adaptive fusion, which 

enhances segmentation accuracy through adaptive multi- feature fusion to improve loca Computer vision is one of the 

fundamental tasks in image segmentation, which seeks to divide an image into meaningful regions. In segmentation 

techniques, cosegmentation detects shared objects among multiple images through intra-image and inter-image relations. 

While previous segmentation methods mainly focused on the analysis of single images, cosegmentation is designed to 

jointly analyze a set of related images. This paper extends seminal works in segmentation and cosegmentation to present 

a new approach based on histogram matching combined with a half-integrality-based optimization framework that leads 

to robust and efficient segmentation. 

 

Graph-based techniques have been at the heart of segmentation for many years, and early work such as GrabCut [1] first 

presented interactive segmentation via graph cuts, which demonstrated the power of combining user input with energy 

minimization. The applications of graph cuts to automatic segmentation have been extensively used because they are 

accurate and efficient [2, 3]. Boykov and Kolmogorov [4] have pioneered the min-cut/max-flow algorithms that make it 

possible for advanced energy minimization methods in vision tasks. Combinatorial optimization approaches such as 

generalized roof duality [5] have further expanded the applicability of graph-based methods in computer vision. 

 

The cosegmentation methods also rely on the common features associated with several images to improve the accuracy 

in segmentation. Chen et al. [2] claimed that histogram matching was useful for coherent and comparative analysis 

between regions, hence enabling robust comparison since statistical distributions are aligned. Zhang and Wen proposed 

Zhou and Shum's [7] extension of this concept through histogram-based techniques and inter-image relationships. 

Probabilistic models [8, 9] and semi-supervised learning approaches [10] have also been applied to improve the 

segmentation performance by making use of labeled and unlabeled data. 
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Our approach extends from these bases as it combines histogram matching with half-integrality-based optimization. 

Half-integrality is a property that emerges in certain graph-based energy formulations; it provides for computational 

efficiency and high-quality solutions. Boykov et al. [6, 11] and others [14, 15] have demonstrated the effectiveness of 

graph-based optimization techniques in addressing complex vision problems. The half-integrality constraint ensures that 

the relaxed optimization problem retains key properties of the original discrete problem, enabling efficient rounding to 

binary solutions [5, 18]. 

 

II. LITEARTURE SURVEY 

 

Cosegmentation is the task of segmenting similar regions from two or more images. Since its introduction by Rother et 

al. in [1], cosegmentation has witnessed quite a number of developments. The method relied on extracting common 

foreground regions using histogram similarity between pairs of images. Their generative model was based on Gaussian 

distributions, which turned out helpful in distinguishing foreground from the background. 

 

Further development has further improved this technique by using algebraic formulations of histogram matching that 

Chen et al. [2] proposed. Abandoning the pure generative model paradigm allowed for an expanded scope in the 

viewpoints of segmentation and optimization, primarily by the definition of histogram similarity that uses squared L2 

distance (SSD) instead of the L1 norm. This optimized landscape in turn enabled better handling of cases where the 

foreground and background structures differ in images. 

 

The integration of Markov Random Fields (MRFs) has been an important milestone in cosegmentation, especially in the 

field of medicine where images are concerned. Bai and Boykov [3] and Boykov and Kolmogorov [4] have shown that 

MRFs are useful in maintaining spatial consistency in segmentation tasks especially in cases where a segmentation 

problem contains multiple images with varying backgrounds. Their methods have shown how combining graph cuts with 

MRFs offers a robust way to segmentation even in challenging scenarios. 

 

Confound the computational complexity of cosegmentation by relaxation methods and graph-cuts have also become 

rather popular. Kolmogorov and Zabin [5] motivated the roof-duality relaxation approach to lean down the non-convex 

character of optimization problems, which makes easier the computation of solutions for cosegmentation. Boykov et al. 

[6] in their work proved that improving the quality of segmentation was achievable by iterative methods based on graph 

cuts. 

 

LP relaxation also assists cosegmentation. Zhou and Shum [7] discuss how relaxing for LP-based techniques can be 

applied to histogram matching, with results that are computationally feasible and close to optimality. Their work showed 

that the relaxation has been leading the solution to half-integral values that are easy to round into classifications of 

foreground-background with binary, in such a way that it secures a high-quality approximation. 

 

A more recent approach to cosegmentation is joint image graphs for soft segmentation, presented by Ma et al. [8]. It 

could more precisely model the pixel correspondence in an image pair and is more suitable for non-rigid objects and 

dynamic scenes, like video processing. The joint images graphs overcome the drawbacks of the methods above and 

improve segments' performance through the consideration of relationships between source and target pixels. 

 

Advances in probabilistic segmentation methods are also realized from the literature. Wang et al. [9] explored a 

probabilistic generative model for image segmentation that accommodated more flexibility for variations in pixel 

intensities. Similarly, Xu and Rother [10] combined probabilistic and iterative refinement methods to improve 

segmentation in scenarios where expert annotations are scarce, as commonly the case in medical imaging. 

 

Several recent works have further refined cosegmentation by exploring unsupervised methods. Bai and Boykov [11] 

demonstrated the efficacy of unsupervised segmentation using MRFs with minimal user input, showing that such 

methods can reach competitive results without the extensive need for training data. This is especially useful in areas like 

medical imaging, where labeled datasets are typically scarce. 
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Another critical domain is graph-based methods in segmentation. In the literature, extensive studies have been done on 

developing graph-based methods for segmentation. Xu et al. [12] and Yang and Rother [13] demonstrated that graph-

based models applied to cosegmentation lead to very impressive improvements in segmentation performance. These 

methods exploit the power of graphs in modeling the relationship between pixels but ensure spatial consistency by 

possessing a better foreground-background distinction. 

 

Lastly, Yarkony and Kolmogorov [14] and Boykov et al. [15] have developed some advanced algorithms for the graph 

cuts algorithm to further enhance accuracy techniques in segmentation. Such developed methods are helpful in image 

segmentation applications in data of a high dimension, with which typical approaches struggle to cope. 

 

III. PROPOSED APPROACH 

 

In recent years, a number of methodologies have been developed for co-segmentation tasks on images, which focus on 

the identification and segmentation of common regions in multiple images. These methods usually involve several 

preprocessing and post-processing stages to enhance the accuracy and efficiency of segmentation. This paper addresses 

each step of the flowchart, including image normalization, resizing, grayscale conversion, histogram matching, and the 

use of half-integrity-based optimization techniques. 

 

 
 

Figure 1: Flow Diagram of proposed model 

 

3.1 Normalisation algorithm for image intensity 

Normalization techniques, like the ones introduced by [3], decrease the range of grayscale values between ridges and 

valleys. Approach visualizes the image as a three-dimensional structure, utilizing positional coordinates on the x-y plane 

and pixel grayscale values on the z-plane. This approach ensures that ridge information is preserved, which is vital for 

minutiae-based image identification systems. 

The steps for image normalization are as follows: 

1. Calculate the mean intensity of the original image. 

2. Calculate the variance of the original image. 

3. Normalize the intensity values to obtain the normalized image. 

Even in cases where skin profiles are uneven, Technique ensures that ridge information is preserved, which is crucial for 

retrieving minute details.  
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• 𝐼(𝑥, 𝑦) be the intensity of the pixel at position (x, y) in the original image. 

• 𝐼𝑛(x, y) be the intensity of the pixel at position (x, y)in the normalized image. 

• 𝑀𝑖  be the mean intensity of the original image. 

• V be the variance of the original image. 

• M’ be the desired mean intensity. 

• V’ be the desired variance. 

The steps for image normalization are as follows: 

(i) Calculate the mean intensity 𝑀𝑖  of the original image: 

  𝑀𝑖 = 1𝑁 ∑  𝑊
𝑥=1 ∑  𝐻

𝑦=1 I(x, y)  
 

where W and H are the width and height of the image, and N=W×H is the total number of pixels. 

(ii) Calculate the variance 𝑉 of the original image: 

  𝑉 = 1𝑁 ∑  𝑊
𝑥=1 ∑  𝐻

𝑦=1 (𝐼(𝑥, 𝑦) − 𝑀𝑖)2
 

 

Normalize the intensity values to obtain 𝐼𝑛(x, y) 𝐼𝑛(𝑥, 𝑦) = 𝑀’ + √𝑉’𝑉 (𝐼(𝑥, 𝑦) − 𝑀𝑖)   
 

3.2 Noise reduction using Gaussian Filtering 

Image denoising is a very essential step in the process of image processing to ensure clear images. As a linear smoothing 

filter, a Gaussian filter is efficiently used for reducing noise by applying a Gaussian function on pixels in the 

neighbourhood of interest. The weighting for the central pixels would be more than that at edges, which in turn averages 

out the pixel values to obtain a smoothened image. It gives more weight to pixels lying near the centre of the kernel and, 

therefore, smoothies high-frequency noise while preserving edges and fine details (Figure 2). 

 

Gaussian Filter Formula 

Given an image I, the Gaussian filter works by convolving the image with a Gaussian kernel. The Gaussian kernel G is 

defined as:  𝐺(𝑥, 𝑦) = 12𝜋𝜎2 𝑒𝑥𝑝−((𝑥2−𝑦2)2𝜎2 )
 

 

where 𝝈 is the standard deviation of the Gaussian distribution, and 𝑥 and 𝑦 are the distances from the centre of the kernel 

in the horizontal and vertical directions, respectively. 

The filtered image 𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑  is obtained by convolving the image 𝐼 with the Gaussian kernel G: 

         𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑  (𝑖, 𝑗) = ∑  𝑘
𝑥=−𝑘 ∑ 𝐼𝑘

𝑦=−𝑘 (𝑖 + 𝑥, 𝑖 + 𝑦)𝐺(𝑥, 𝑦) 

Where 𝑘  is the size of the kernel. 

 

 Region Mask 

One may design a region mask of a image by locating some regions of interest in an image mathematically. This kind of 

processing will turn out to be beneficial for several applications related to feature extraction, matching, and analysis. 

Some of the steps and formulas used are as follows: 
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Preprocess the Image: 

• Convert the image to grayscale. 

• Apply Gaussian blur to reduce noise. 

• Enhance the image contrast. 

1. Grayscale Conversion: 

Convert an RGB image to grayscale   𝐼𝑔𝑟𝑎𝑦 = (0.2989𝑅 + 0.5870𝐺 + 0.1140𝐵) 

2. Gaussian Blur: 

Gaussian filter to smooth the image G(x, y) = 12𝜋𝜎2 𝑒𝑥𝑝−((𝑥2−𝑦2)2𝜎2 )
 

   

Convolve the image   𝐼𝑔𝑟𝑎𝑦  with the Gaussian kernel G: 

               𝐼𝑏𝑙𝑢𝑟𝑟𝑒𝑑  (x, y) =    𝐼𝑔𝑟𝑎𝑦 × G(x, y)  
 

3. Otsu's Thresholding: 

Find the threshold that minimizes the intra-class variance: 

 σɷ2 (𝑡) = ɷ1(𝑡)σ12(𝑡) + ɷ2(𝑡)σ22(𝑡) 

Where: 

• ɷ𝑖 is the probability of class 𝑖 
• σi  is the variance of class 𝑖 
 

3.3 Problem Formulation 

Let denote a collection of input images, each defined by a collection of pixels or super-pixels (𝑃𝑖) 
be a set of {𝐼𝑖 , 𝐼𝑖𝑖 … … 𝐼𝑖𝑛} N input images, with each image being defined by a set of pixels or superpixels( 𝑃𝑖) 
 The objective is to assign to each pixel 𝑝 across all images a binary label 𝑥𝑝𝜺{𝟎, 𝟏} 𝑥𝑝 = 1 Pixel  belongs 𝑝 to the foreground. 𝑥𝑝 = 0 Pixel  belongs 𝑝 to the background. 

 

3.3 Histogram Matching in Cosegmentation 

Cosegmentation is the task of foreground-background classification of pixels. It classifies the input images while 

ensuring that two images share similar histograms across their respective foreground pixels. Let us denote the input 

images by 𝑰𝒊 , 𝑰𝒊𝒊 and distribute their respective histograms across the bins of 𝑯𝒃. The coefficient matrix 𝑪𝑴 𝑪𝑴 captures the membership of each pixel intensity to these bins. The segmentation task assigns each pixel to either 

foreground (f) or background (b) while minimizing the following: 

  The deviation in foreground histograms between the two images. 

A smoothness penalty that ensures spatial consistency. 

A data term that aligns pixel intensities with their class assignment. 

The optimization goal is to achieve the segmentation by minimizing a defined energy function. 

 

Energy Function Formulation 

The overall energy function is defined as: 

 𝐸(𝑆𝑙) = 𝛼. 𝐸𝑠(𝑆𝑙) + 𝛽. 𝐸𝑑(𝑆𝑙) + 𝛾. 𝐸ℎ(𝑓1 , 𝑓2  ) 

 

 𝑆𝑙 = Segmentation labelling of pixels. 𝐸𝑠 = Smoothness term. 𝐸𝑑 = Data fidelity term. 
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𝐸ℎ =Histogram matching term. 𝛼, 𝛽 , 𝛾 Weights controlling the contribution of each term. 

Smoothness Term 

The smoothness term enforces spatial coherence by penalizing differences in the class labels assigned to adjacent 

pixels: 𝐸𝑠(𝑠𝑙) = ∑ 𝑤(𝑖, 𝑗). |𝑠𝑖 − 𝑠𝑗|(𝑙;𝐽)𝜀𝑁  

Where: 𝑁= Neighboring pairs of pixels. 𝑤(𝑖, 𝑗)=Weight depending on the similarity, e.g., intensity difference between the pixels 𝑠𝑖 , 𝑠𝑗=Class label of the pixels 

 

Data Fidelity Term 

The data term is the cost that is incurred by assigning the pixel to the foreground or background due to its intensity  

 𝐸𝑑(𝑠𝑙) = ∑ 𝐷𝑖(𝑠𝑖)𝑖  

 

 

 𝐷𝑖(𝑠𝑖)= Data term incurred by assigning the pixel 𝑖 to label 𝑠𝑖 
 

Histogram Matching Term 

The histogram matching term ensures similarity in the foreground histograms of both images 

 𝐸ℎ (𝑓1, 𝑓2) = ∑(𝐻𝑓1  (𝑏) − 𝐻𝑓2  (𝑏)𝐵
𝑏1 )2 

Where:  𝐻𝑓1  (𝑏)  and 𝐻𝑓2  (𝑏) : Foreground histograms for images 𝐼1 and 𝐼2  in bin 𝑏. 𝐵 = Total number of histogram bins. 

This term ensures the histograms of the foreground regions in the two images remain consistent, within a tolerance 

bound ϵ 
 

3.4 Half-Integrality Optimization 

3.4.1 Relaxation of Binary Constraints 

The binary constraint xp𝛆{𝟎, 𝟏} is relaxed to a continuous domain: 

 xp𝛆{𝟎, 𝟏}, ∀𝐩𝛆𝐏 

The relaxed energy function becomes: 

 𝐦𝐢𝐧xp𝛆{𝟎,𝟏} 𝐄(𝐱) 

 

3.4.2 Half-Integrality Property 

For certain graph-based energy formulations, the LP relaxation exhibits the half-integrality property:  

 𝑥𝑝𝜀 {0, 12 , 1} , ∀𝑝𝜀𝑃 
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3.4.3 Optimization Algorithm 

1. Linear Programming Relaxation: 

Solve the relaxed LP formulation to obtain fractional labels 𝑥𝑝𝜀{0,1} 

 

Rounding: 

• Use the half-integrality property to round  𝑥𝑝 values: 

o 𝑥𝑝 = 12:  Assign to either 0 or 1 based on local histogram similarity. 

 

Experimental Results and Discussion  

The proposed method was implemented in Visual Studio Code using Python, Matplotlib, Pandas, NumPy, and OpenCV 

libraries. Below are the visual comparisons of our results with the results of state-of-the-art co-segmentation methods on 

the standard co-segmentation datasets, MSRC. We tested our proposed co-segmentation method on the MSRC dataset 

and compared it with a number of state-of-the-art techniques. The performance of each technique was measured with 

three key metrics: IoU, pixel-wise accuracy, and F-Score. 

 

Method IoU 

(%) 

Pixel-wise 

Accuracy 

(%) 

F-Score 

(%) 

Proposed 

Method 

81.3 94.1 87.3 

Co-segNet [1] 79.3 91.8 85.7 

Multi-level Co-

segmentation [2] 

80.5 92.3 86.9 

Graph-based Co-

segmentation [3] 

81.1 93.5 87.4 

 

In the tested metrics, our approach performs better than all current state-of-the-art approaches. Specifically, an IoU of 

81.3%, a pixel-wise accuracy of 94.1%, and an F-Score of 87.3% is obtained to provide a higher level of common region 

segmentation of different images. 

 

 
 

Figure 2: Comparison graph of proposed model with co-segNet and graph-based co-segmentation 
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We used several steps for pre-processing, which included normalization, resizing, converting into grayscale, and 

histogram matching along with graph-based optimization and morphological post-processing to get better results. 

 

The visual comparison in Figure 2, our method achieves more accurate and cleaner segmentations, especially in 

capturing common regions in complex scenes. The segmentation borders appear sharper and relevant regions are better 

identified as compared with the other methods. 

 

The results presented above emphasize the effectiveness of the proposed methodology in achieving very high-quality co-

segmentation results. 

 
 

Figure 3: EXPERIMENTAL RESULTS 
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IV. CONCLUSION 

 

We introduced a new algorithm that co-segments the foreground, based on combining Markov Random Fields (MRF) 

with a penalty given by the sum of squared differences (SSD) of the histograms. MRF terms together with an SSD 

penalty to enforce coherent foreground segmentation over all images constitute the objective function. By having an SSD 

as penalty, it makes the solution for linear programming optimization take only the values {0, 1/2, 1} so the simple 

rounding strategy follows. This half-integrality approach improves segmentation quality and computational efficiency, 

with no need for initialization. The algorithm is adaptable to general appearance models and offers strong performance 

with minimal computational overhead.. 
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