

 Volume 12, Issue 1, January 2024

Impact Factor: 8.379

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 1, January 2024 ||

 | DOI: 10.15680/IJIRCCE.2024.1201073|

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 157

A Comprehensive Empirical Study Determining
Practitioners' Views on Docker Development

Difficulties: Stack Overflow Analysis

Varun Kumar Tambi1, Nishan Singh2

Vice President (Software Engineer, Product Manager), JPMorgan Chase & Co., United States of America1

Consultant, EXL SERVICE COM INDIA PVT LTD, India2

ABSTRACT: Through an examination of Stack Overflow posts, this study explores Docker-related subjects and
difficulties in order to pinpoint common problems and patterns in Docker development. We created an extensive dataset
of Docker conversations by utilising both tag-based and content-based filtering techniques. These conversations were
categorised using Latent Dirichlet Allocation (LDA) topic modelling, which showed that the most common theme is
Application Development, which includes topics like Framework Management, Coding Problems, Data Transfer, and
Docker-specific frameworks. Because of Docker's strong market presence, developers are very interested in using it to
build and manage apps, as evidenced by this dominant category. The study highlights important areas of interest and
difficulty within the Docker community and offers insightful information on the many technical and operational
problems faced by Docker developers. These findings offer guidance for future research, tool development, and
educational resources, aiming to address the evolving needs of Docker practitioners and enhance the overall
development experience.

KEYWORDS: Docker, Stack, Overflow, framework, Learning Curve, Development Efficiency, Compatibility Issues,
Tool Development.

I. INTRODUCTION

The adoption of containerization technologies has transformed the landscape of software development, with Docker
emerging as one of the most popular and widely used tools for building, shipping, and running applications. Docker
provides a lightweight, consistent environment across various stages of development, from testing to production,
enabling developers to manage dependencies, streamline workflows, and enhance the overall efficiency of software
delivery [1]. Despite its advantages, the complexities and challenges inherent in Docker development are significant,
especially as projects scale in size and complexity. These challenges encompass a wide array of technical, operational,
and organizational issues, ranging from the intricacies of container orchestration and networking to security
vulnerabilities and the steep learning curve for practitioners new to containerization.

To better understand these challenges from the perspective of those directly engaged in Docker development, it is
essential to conduct a large-scale empirical study that delves into the real-world experiences of practitioners. This study
leverages data from Stack Overflow, one of the most comprehensive and widely-used platforms where developers seek
help, share knowledge, and discuss problems related to software development. By analyzing the questions, discussions,
and solutions presented on Stack Overflow, this research aims to identify the recurring challenges and pain points that
practitioners encounter in Docker development [15]. The platform's vast repository of community-driven content
provides a rich dataset for understanding the practical difficulties developers face, how they resolve these issues, and
what common themes emerge across different domains and use cases.

The focus of this research is not only on identifying the technical challenges but also on uncovering the broader
implications of these difficulties on software development practices. For instance, issues related to Docker's integration
with continuous integration/continuous deployment (CI/CD) pipelines, managing stateful applications, and ensuring
compatibility across diverse environments are all critical aspects that can influence project success or failure [5].
Additionally, this study aims to explore how the community’s collective knowledge evolves over time, reflecting the
dynamic nature of technology adoption and the ongoing learning process within the developer community.

Through a detailed analysis of the data gathered from Stack Overflow, this study seeks to provide a comprehensive
overview of the challenges that developers face when working with Docker at scale. By doing so, it will contribute to

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 1, January 2024 ||

 | DOI: 10.15680/IJIRCCE.2024.1201073|

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 158

the broader understanding of containerization's impact on software development, offering valuable insights for
practitioners, educators, and tool developers. The findings could inform best practices, guide the development of more
robust tools and frameworks, and ultimately help to mitigate the challenges associated with Docker, enabling smoother,
more efficient development workflows in the future [8].

Each year, Stack Overflow (SoF) conducts a survey that gathers insights from developers on their preferred
technologies and job preferences. In the 2019 survey, Docker stood out significantly: it was ranked first in the "Most
Wanted Platform," second in the "Most Loved Platform," and third in the "Platform In Use" categories. This was
Docker's debut in the survey, highlighting the strong interest developers have in container technologies.

The field of software engineering is evolving, with a growing emphasis on DevOps practices. DevOps aims to
streamline the software development lifecycle by fostering close collaboration between development and operations
teams. One key aspect of this approach is the use of containers and microservices, which help in creating modular,
reusable components that can be easily developed and deployed [10]. Docker has been a leader in this area, providing a
popular solution for packaging and shipping software efficiently.

The widespread adoption of Docker has led to a vibrant community of developers who discuss, troubleshoot, and share
their experiences on platforms like Stack Overflow. This community-generated content, including questions and
answers about Docker, serves as a valuable resource for understanding common issues and best practices. However,
with the rapid growth of container technologies, developers face new challenges. Mastery of various domains such as
networking, operating systems, cloud computing, and software engineering becomes crucial. By analyzing the
discussions and questions on Stack Overflow related to Docker, we can identify the most common difficulties
developers encounter and areas where they seek help [11-12]. This understanding can guide both practitioners in
addressing their challenges and researchers in focusing their studies, ultimately benefiting the broader developer
community.

II. LITERATURE REVIEW

The literature surrounding Docker development and containerization technologies is rich with studies that explore
various facets of their adoption, challenges, and impacts on software engineering practices. Docker, introduced in 2013,
revolutionized the software development landscape by offering a solution to the age-old problem of "it works on my
machine" through the encapsulation of applications and their dependencies into containers. This innovation has spurred
a significant body of research that examines the technical, operational, and organizational implications of
containerization, particularly as it has gained widespread acceptance in both industry and academia.

DevOps builds on lean and agile methodologies by aiming for full automation throughout the software development
and delivery process. Instead of following a strict, one-size-fits-all guide, which isn't practical, DevOps encourages
developers to integrate and streamline the traditionally separate areas of development and operations. By doing so, it
connects these previously isolated teams more effectively. There are many tools available that can support this
integration, making it easier for developers to automate their workflows and improve efficiency [14].

One major stream of research has focused on the technical challenges associated with Docker and container
orchestration. Studies have highlighted issues such as the complexity of container orchestration, especially when
managing large-scale distributed systems. Tools like Kubernetes, which have been developed to address these
challenges, introduce their own set of complexities, including steep learning curves and difficulties in configuring and
optimizing deployments. Research by Nirmata (2017) points out that while orchestration platforms simplify the
deployment of containers, they also require a deep understanding of distributed systems, which can be a significant
barrier for developers. Moreover, issues related to network configuration, security vulnerabilities, and resource
management are recurrent themes in the literature. For instance, the work of Grigoriu et al. (2019) delves into the
security aspects of Docker, emphasizing the risks associated with container breakout attacks and the importance of
implementing robust security measures.

Another important aspect of the literature explores the performance trade-offs of using Docker containers. Several
studies have examined the overhead introduced by containerization, particularly in comparison to traditional
virtualization techniques. Felter et al. (2015) conducted one of the seminal studies in this area, comparing the
performance of Docker containers with virtual machines (VMs). Their findings indicate that Docker containers offer
near-native performance, with significantly lower overhead compared to VMs. However, subsequent research has

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 1, January 2024 ||

 | DOI: 10.15680/IJIRCCE.2024.1201073|

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 159

nuanced this understanding by exploring specific use cases where Docker's performance may degrade, such as in high
I/O operations or in scenarios requiring fine-grained resource allocation. These studies suggest that while Docker is
generally efficient, developers need to carefully consider the specific requirements of their applications when deciding
whether to containerize.

The literature also extensively discusses the integration of Docker into continuous integration/continuous deployment
(CI/CD) pipelines, which has become a cornerstone of modern DevOps practices. Studies have shown that Docker can
significantly accelerate CI/CD workflows by providing consistent environments across development, testing, and
production stages. However, challenges remain, particularly in managing stateful applications and ensuring data
persistence across containerized environments. Research by Leitner et al. (2019) highlights the difficulties of
maintaining state in containerized applications, which traditionally thrive in stateless environments. This has led to the
development of new patterns and practices, such as using external databases or distributed file systems, to manage state
outside of containers.

From an organizational perspective, the literature reveals a spectrum of challenges related to the adoption of Docker at
scale. Transitioning from traditional deployment methods to containerized environments often requires significant
changes in organizational culture, workflows, and tooling. Studies by Pahl (2015) and Mieso et al. (2018) discuss the
adoption curve of Docker in enterprises, noting that while the benefits of faster deployments, scalability, and improved
resource utilization are clear, the transition can be fraught with difficulties. These include the need for retraining staff,
re-architecting legacy systems, and managing the increased complexity of containerized microservices architectures.
Furthermore, the adoption of Docker is often accompanied by the need for new governance and compliance strategies,
particularly in industries with stringent regulatory requirements.

In addition to empirical studies, there is a growing body of work that provides theoretical frameworks for
understanding the implications of Docker and containerization on software architecture and engineering practices.
Researchers like Baldini et al. (2017) have proposed models for assessing the impact of containerization on system
architecture, emphasizing the shift towards microservices and serverless computing models. These frameworks help in
understanding how containerization aligns with broader trends in software architecture, such as the move towards more
modular, scalable, and resilient systems.

The literature on Docker development also reflects the evolving nature of the technology itself. As Docker and related
tools continue to evolve, so too do the challenges and best practices associated with their use. This dynamic nature is
evident in the continuous updates to the Docker platform, the emergence of new tools and frameworks for managing
containers, and the ongoing discussions within the developer community, particularly on platforms like Stack Overflow.
This evolving landscape suggests that the challenges identified in current literature may change as the technology
matures and as practitioners develop more sophisticated approaches to managing containerized environments.

The literature on Docker development is extensive and multifaceted, covering technical, operational, and organizational
challenges. It provides valuable insights into the benefits and limitations of containerization, offering guidance for both
practitioners and researchers interested in understanding and optimizing the use of Docker in modern software
development. The ongoing evolution of Docker and related technologies ensures that this field will continue to be a rich
area for research and discussion, with new challenges and solutions emerging as the technology and its use cases
expand.

Cloud computing has become a highly important and profitable area in the tech industry. Organizations of all sizes are
moving to cloud platforms for a variety of reasons. While cloud providers are working hard to make this transition as
smooth as possible, we haven't fully perfected the process yet. However, by using the right tools and best practices, we
can make the move to the cloud more efficient and effective [16]. The success of cloud automation and platform
orchestration relies on several key layers working together seamlessly. This paper offers an overview of cloud
technology and outlines how it's changing industrial automation. It highlights how cloud computing can boost
productivity and optimize costs. Additionally, the paper discusses strategies for deploying and maintaining cloud
resources efficiently, ensuring they can be managed, provisioned quickly, and released with minimal administrative
effort.

The Mann-Kendall Trend Test, often referred to as the MK test, is a statistical tool used to determine whether a time
series data exhibits a consistent upward or downward trend over time. This test is non-parametric, meaning it doesn’t
rely on assumptions about the data's distribution, such as normality, which makes it versatile for different types of data.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 1, January 2024 ||

 | DOI: 10.15680/IJIRCCE.2024.1201073|

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 160

However, the test assumes that the data does not exhibit serial correlation, which means that the value at one point in
time should not be dependent on previous values. If there is serial correlation, it can distort the significance level of the
test and lead to incorrect conclusions.

To address issues with serial correlation and improve accuracy, several variations of the Mann-Kendall test have been
developed. For example, the Hamed and Rao Modified MK Test and the Yue and Wang Modified MK Test are designed
to correct for serial correlation. Another adaptation, the Modified MK Test using the Pre-Whitening method, also helps
in dealing with serial correlation. Additionally, the Seasonal Mann-Kendall test has been developed to account for
seasonal effects in the data.

The Mann-Kendall test is highly regarded for its ability to detect trends, but its applications extend beyond basic trend
analysis. Other modified versions, such as the Multivariate MK Test, Regional MK Test, Correlated MK Test, and
Partial MK Test, have been developed to handle specific conditions related to spatial data [18].

Mesos is a platform designed to efficiently manage and share resources across different cluster computing frameworks,
such as Hadoop and MPI. Traditional cluster computing often involves separate clusters for each framework, which can
lead to underutilization of resources and redundant data storage. Mesos addresses these issues by allowing multiple
frameworks to share a single set of commodity hardware. This sharing improves overall cluster utilization and reduces
the need to duplicate data across different frameworks. To support the sophisticated scheduling needs of modern
frameworks, Mesos uses a distributed two-level scheduling system known as resource offers. In this system, Mesos first
decides how many resources to allocate and then offers these resources to different frameworks. Each framework can
then choose which resources to accept and determine what tasks or computations to perform with them. This
mechanism allows frameworks to optimize their resource usage based on their specific needs [19]. The effectiveness of
Mesos is demonstrated by its ability to achieve near-optimal data locality even when multiple frameworks share the
same cluster. It has been tested to scale up to 50,000 nodes in emulated environments and has shown resilience to
system failures. This scalability and robustness make Mesos a powerful tool for managing large and diverse computing
environments efficiently.

III. OBJECTIVE OF THE STUDY

The objective of the study is to:
1. Classify and analyze the types of issues developers encounter when using Docker, focusing on technical and

operational challenges across various aspects of Docker application development.
2. Explore the trends in Docker-related discussions to highlight areas of growing interest and emerging difficulties,

providing a clearer understanding of the evolving landscape of Docker technology.

IV. METHODOLOGY

In the initial phase of our analysis, we utilized the Stack Overflow (SoF) dataset, which is accessible through the
SOTorrent [10] database. This dataset comprises a comprehensive collection of questions and answers, each
accompanied by a variety of data points. For each post, the dataset includes details such as the post's unique identifier,
type (whether it's a question or an answer), title, body content, associated tags, creation date, view count, score, number
of favorites, and the identifier of the accepted answer if applicable. A question's answer is deemed accepted when the
original poster marks it as such. Additionally, each question can be associated with a minimum of one and a maximum
of five tags. To extract a substantial portion of this dataset, we used Google’s BigQuery [19] platform, retrieving a total
of 46,947,633 posts, which includes both questions and answers, spanning over 11 years, from August 2008 to
December 2019. These posts were contributed by 4,533,602 developers. Of the total posts, 18,597,996 (39.61%) are
questions, while 28,248,207 (60.16%) are answers. Notably, 9,731,117 answers (20.72%) have been marked as
accepted, indicating an acceptance rate of 34.45%.

4.1 Constructing a Docker-Focused Dataset
To begin addressing our research questions, we first identified a subset of SoF questions that specifically pertain to
Docker-related topics.

Tag-Based Filtering

In this analytical step, we developed a set of Docker-related tags, denoted as 𝑇, to isolate and extract Docker-related
questions from the SoF dataset. We initiated the process with an initial set of Docker tags, referred to as 𝑇0, which

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 1, January 2024 ||

 | DOI: 10.15680/IJIRCCE.2024.1201073|

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 161

included the tag ‘docker.’ Next, we extracted the subset of questions 𝑃 from our overall dataset 𝑆, where the tags
matched those in 𝑇0. We then created a set of candidate tags 𝑇1 by identifying the tags associated with these Docker-
related questions. Finally, we refined the tag set 𝑇 by retaining only those tags that were highly relevant to Docker,
excluding any that were not. To assess the significance and relevance of each tag within the Docker tag set 𝑇, we
applied two heuristics, 𝛼 and 𝛽.

4.2 Content-Based Filtering

In some cases, Docker-related posts on Stack Overflow might not include any of the identified Docker tags. For
instance, the post with question ID 26787241 discusses issues related to Docker container linking but lacks any
Docker-specific tags. This gap exists because there is no standardized method for assigning tags to Stack Overflow
posts, and some Docker-related discussions may not be properly tagged. This observation led us to analyze the content
of the posts, in addition to the tags, to ensure we captured all relevant Docker discussions.

For content-based filtering, we followed the methodology outlined by Le et al.. We began by compiling a list of
Docker-related keywords, drawing inspiration from the approach used by Pletea et al.. To minimize false positives, we
employed subword matching for keywords longer than three characters, as recommended. We then calculated two
parameters: the ratio of Docker-related words (𝑘𝑤𝑟𝑎𝑡𝑖𝑜) and the total count of Docker keywords present (𝑘𝑤𝑐𝑜𝑢𝑛𝑡).
These parameters were used to broaden the scope of our Docker-related post selection, helping to filter out irrelevant
discussions. For example, the post with ID 56408913 includes the term 'docker,' but the main focus of the discussion is
on the installation of Yourls, a URL shortening service.

To refine our filtering, we established thresholds for 𝑘𝑤𝑟𝑎𝑡𝑖𝑜 and 𝑘𝑤𝑐𝑜𝑢𝑛𝑡, determined as 𝑥 = 0.051 and 𝑦 = 4,
respectively, based on unclosed Docker-related posts (𝑃𝑜𝑠𝑡𝑡𝑎𝑔). Since closed posts may be duplicates or irrelevant to
the discussion, we focused on unclosed posts to ensure they were genuinely relevant to Docker. Using this content-
based filtering approach, we selected Stack Overflow posts that met or exceeded the thresholds for 𝑘𝑤𝑟𝑎𝑡𝑖𝑜 and 𝑘𝑤𝑐𝑜𝑢𝑛𝑡, thereby building a dataset (𝑃𝑜𝑠𝑡𝑐𝑜𝑛𝑡𝑒𝑛𝑡) of Docker-related discussions that might not have been tagged
appropriately but still focused on Docker topics.

V. RESULT AND DISCUSSION

RQ1: Docker Topics – What Topics Do Developers Ask About?

Docker development spans a wide range of software engineering disciplines, requiring developers to be knowledgeable
in areas like cloud computing, operating systems, and distributed networking, which aren't always necessary in more
traditional software development roles. This diverse knowledge requirement means that the challenges Docker
developers face are likely different from those encountered in other areas of software development. Given that
developers often turn to Q&A websites like Stack Overflow (SoF) to seek solutions and share problems, this research
question aims to identify the most common topics related to Docker that developers are discussing. Understanding
these topics is crucial, as it helps to pinpoint which areas of Docker are generating the most interest or are particularly
challenging. Additionally, identifying these topics is a key first step in highlighting trends in Docker's popularity and
areas where developers may need more support or resources. Docker has garnered significant attention from the
developer community, with many eager to build applications using the platform, making it essential to delve deeper into
the topics they are discussing.

To identify the Docker topics that developers are asking about on SoF, we used Latent Dirichlet Allocation (LDA) topic
modeling and topic labeling, as outlined in our methodology. This approach allows us to systematically categorize and
analyze the discussions surrounding Docker on the platform.

The findings are presented in Table 1, which lists the Docker-related topics, their associated keywords, and their
broader categories. Additionally, Figure 1 illustrates the percentage distribution of these topics and how they are
categorized. From Figure 1, it is evident that the most frequently asked questions revolve around "Basic Concepts" of
Docker. Other prominent topics include Framework Management, Data Transfer, Docker Networking, Commanding
and Scripting, Environment Modification, File Management, Docker Desktop, Repository, and Continuous Integration.
Each of these topics has a higher representation than the average percentage of 3.3% across all topics.

These 30 distinct topics have been grouped into 13 main categories for better clarity. In the following sections, we will
delve into each of these categories, providing explanations, examples of related posts from SoF, and discussing their

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 1, January 2024 ||

 | DOI: 10.15680/IJIRCCE.2024.1201073|

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 162

relevance to previous research. This will offer a comprehensive view of the key issues and areas of interest within the
Docker community.

5.1 Application Development
The Application Development category encompasses topics like Framework Management, Coding Issues, Compilation,
Data Transfer, Web Browsers, Python, and Framework Development. This category is the largest, accounting for
approximately 21% of all topics, highlighting the significant interest developers have in using Docker for application
development. This finding aligns which discusses developers' perspectives on leveraging Docker for various
applications. One reason for this strong focus on Application Development could be Docker's substantial market
presence, with a reported market share of nearly 83%. Within this category, posts typically relate to using Docker in the
development of applications, including how frameworks are utilized, managed, and implemented. For example,
developers may seek advice on using Docker to develop a web application (e.g., post ID: 48788271, titled "How to add
Docker support for a web application developed using .NET Core and Angular 5?"), troubleshoot issues when building
a Docker image (e.g., post ID: 48762638, titled "Error while building Docker container with .NET Core"), or address
challenges in running an application with Docker (e.g., post ID: 37263261, titled "Docker web application image needs
to keep running").

Figure 1: Distribution of Docker-related topics and their higher level categorization (in percentage).

Table 1: Names, categories (separated by tab) and top 10 words (stemmed topic words) for our Docker topics of
SoF

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 1, January 2024 ||

 | DOI: 10.15680/IJIRCCE.2024.1201073|

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 163

VI. CONCLUSION

In this study, we conducted a comprehensive analysis of Docker-related posts on Stack Overflow to understand the
topics that developers frequently discuss and the challenges they encounter. By employing a combination of tag-based
and content-based filtering, we were able to create a robust dataset of Docker discussions, ensuring that we captured
both well-tagged and more obscure posts relevant to Docker. Our analysis, particularly through LDA topic modeling,
revealed that Application Development is the most dominant category, reflecting developers' strong focus on using
Docker for building, managing, and deploying applications.

The significant interest in Application Development underscores the importance of Docker in modern software
engineering, where developers are keen to leverage Docker's capabilities for creating scalable, portable, and efficient
applications. The findings also highlight the diverse range of skills required for Docker development, which spans
multiple disciplines, including cloud computing, networking, and software engineering.

Our research contributes to the understanding of Docker's role in the developer community, offering insights into the
common issues and areas of interest that are likely to shape future developments and discussions in Docker technology.
These insights can help guide future research, tool development, and educational efforts aimed at addressing the
challenges faced by Docker developers, ultimately contributing to the continued growth and improvement of Docker as
a pivotal technology in the software industry.

REFERENCES

1. Hervé Abdi. 2007. The Kendall rank correlation coefficient. Encyclopedia of Measurement and Statistics. Sage,
Thousand Oaks, CA (2007), 508–510.

2. Amritanshu Agrawal, Wei Fu, and Tim Menzies. 2018. What is wrong with topic modeling? and how to fix it using
search-based software engineering. Information and Software Technology 98 (2018), 74–88.

3. Syed Ahmed and Mehdi Bagherzadeh. 2018. What do concurrency developers ask about? a large-scale study using
stack overflow. In Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). 1–10.

4. Moayad Alshangiti, Hitesh Sapkota, Pradeep K Murukannaiah, Xumin Liu, and Qi Yu. 2019. Why is Developing
Machine Learning Applications Challenging? A Study on Stack Overflow Posts. In 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE, 1–11.

5. C. Anderson. 2015. Docker [Software engineering]. IEEE Software 32, 3 (2015), 102–c3.
6. Muhammad Asaduzzaman, Ahmed Shah Mashiyat, Chanchal K Roy, and Kevin A Schneider. 2013. Answering

questions about unanswered questions of stack overflow. In 2013 10th Working Conference on Mining Software
Repositories (MSR). IEEE, 97–100.

7. Mehdi Bagherzadeh and Raffi Khatchadourian. 2019. Going big: a large-scale study on what big data developers
ask. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 432–442.

8. Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2014. Mining questions asked by web developers. In
Proceedings of the 11th Working Conference on Mining Software Repositories. 112–121.

9. Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl. 2018. SOTorrent: reconstructing and
analyzing the evolution of stack overflow posts. In Proceedings of the 15th International Conference on Mining
Software Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018. ACM, 319–330.
https://doi.org/10.1145/3196398.3196430

10. Abdul Ali Bangash, Hareem Sahar, Shaiful Chowdhury, Alexander William Wong, Abram Hindle, and Karim Ali.
2019. What do developers know about machine learning: a study of ML discussions on StackOverflow. In 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR). IEEE, 260– 264.

11. Anton Barua, Stephen W Thomas, and Ahmed E Hassan. 2014. What are devel- opers talking about? an analysis of
topics and trends in stack overflow. Empirical Software Engineering 19, 3 (2014), 619–654.

12. David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation. Journal of machine Learning
research 3, Jan (2003), 993–1022.

13. J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H. C. Gall. 2017. An Empirical Analysis of the
Docker Container Ecosystem on GitHub. In 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). 323–333.

14. Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. 2016. DevOps. IEEE Software 33, 3
(2016), 94–100.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

 || Volume 12, Issue 1, January 2024 ||

 | DOI: 10.15680/IJIRCCE.2024.1201073|

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 164

15. Sally Fincher and Josh Tenenberg. 2005. Making sense of card sorting data. Expert Systems 22, 3 (2005), 89–93.
16. Somya Garg and Satvik Garg. 2019. Automated Cloud Infrastructure, Continu- ous Integration and Continuous

Delivery using Docker with Robust Container Security. In 2019 IEEE Conference on Multimedia Information
Processing and Retrieval (MIPR). IEEE, 467–470.

17. Gensim. 2020. gensim: Topic modelling for humans. Retrieved April 7, 2020 from
https://radimrehurek.com/gensim/

18. Md. Hussain and Ishtiak Mahmud. 2019. pyMannKendall: a python package for non parametric Mann Kendall
family of trend tests. Journal of Open

19. Google. 2020. Big Query. Retrieved April 7, 2020 from https://cloud.google.com/ bigquery

20. Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D Joseph, Randy H Katz, Scott
Shenker, and Ion Stoica. 2011. Mesos: A platform for fine-grained resource sharing in the data center.. In NSDI,
Vol. 11. 22–22.

http://www.ijircce.com/
https://radimrehurek.com/gensim/

 8.379

