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ABSTRACT: In order to lessen the negative impact that flooding has on people and infrastructure, it is essential to 

improve flood prediction and management technologies. The purpose of this research is to investigate a unique method 

to flood prediction by means of the design and implementation of a privatization-based flood predictive model. The 

model focuses on sub-watershed analysis by utilizing morphological factors and Geographic Information System (GIS) 

technology. The concept incorporates ideas of privatization, which encourages engagement from the private sector in 

flood risk management. This, in turn, improves the allocation of resources and the efficiency of operations. Using 

geographic information system (GIS) techniques, key morphological features, such as the shape of the watershed, the 

slope, the drainage pattern, and the qualities of the soil, are examined in order to determine the sub-watershed level of 

flood vulnerability. The model makes use of a multi-criteria decision-making framework in order to prioritize sub-

watersheds according to the risk of flooding they pose. This makes it easier to implement focused interventions and 

properly distribute resources. Validation of the model's forecasting ability is accomplished by the utilization of 

historical flood data, hydrological statistics, and inputs from remote sensing. It is demonstrated via the use of the case 

study that the privatization-based strategy considerably enhances the accuracy and responsiveness of flood predictions. 

Morphological analysis may be integrated with geographic information systems (GIS) to provide thorough spatial 

evaluation, which in turn provides insights that can be put into action for flood risk management. The findings illustrate 

the potential advantages that may be gained from the engagement of the private sector in the improvement of flood 

prediction models and bring to light the significance of conducting comprehensive sub-watershed analyses in flood 

control plans. This paper provides a complete framework for the development of successful flood forecasting models, 

advocating for a collaborative approach that makes use of the experience and resources available in the private sector. 

In order to promote a proactive and resilient approach to flood risk management, the model that has been suggested 

serves as a significant tool for urban planners, legislators, and professionals working in disaster management. 
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I. INTRODUCTION 

 

When it comes to successful flood risk management methods, the development and deployment of flood prediction 

models are crucial components. This is especially true in locations that are highly prone to flooding. For the purpose of 

sub-watershed analysis, this work focuses on the construction of a flood forecasting model that is based on privatization 

and employs a morphological and geographic information system-based methodology. This model integrates the 

participation of the private sector and makes use of modern geographic information systems (GIS) technology with the 

purpose of improving both accuracy and efficiency. This is in contrast to traditional techniques, which frequently 

depend primarily on data that is generally accessible to the public and on government organizations for flood 

prediction. As a means of supplementing the efforts of the government in the areas of flood risk assessment and 

mitigation, flood prediction models that are based on privatization make use of the knowledge and resources of private 

firms. The integration of private data sources, including as satellite images, aerial surveys, and proprietary hydrological 

models, which may not be easily available to public agencies, is made possible through the use of this collaborative 

method. In order to improve emergency response planning and infrastructure resilience, privatization-based models can 
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give flood forecasts that are more complete and timely. This is accomplished by using the talents of both the public and 

private sectors.  

 

In order to determine the degree to which sub-watersheds are susceptible to floods, the morphological component of the 

model focuses on examining the physical features of sub-watersheds. These factors include the slope of the terrain, the 

land use or land cover, the type of soil, and the drainage patterns. In the process of assessing the hydrological behavior 

of watersheds, morphological factors play a significant role and can be of assistance in locating places that are at a high 

risk of flooding. Through the use of morphological data and geographic information system (GIS) technology, the 

model is able to create comprehensive flood risk maps and pinpoint susceptible locations with increased accuracy. The 

geographic information system (GIS)-based technique is a useful supplement to the morphological study since it offers 

capabilities for spatial data processing and display. The technology known as geographic information systems (GIS) 

makes it possible to include several data layers into a single geographic information system. These data layers include 

topographic maps, satellite images, and hydrological models. The ability to do spatial analysis, identify sub-watersheds, 

compute morphological characteristics, and develop flood risk maps is made possible as a result of this. The use of 

geographic information system technology also makes it easier for stakeholders to share data and work together, which 

improves communication and coordination in the context of flood risk management initiatives.  

 

In order to successfully apply the privatization-based flood forecasting model, there are numerous essential measures 

that must be taken. In the first step of the process, data collection is carried out in order to acquire pertinent 

morphological and hydrological data. This includes the collecting of topographic maps, data on land use and land 

cover, soil maps, data on precipitation, and streamflow data. This information is then processed and analyzed with 

geographic information system (GIS) software in order to create flood risk maps, designate sub-watersheds, and 

compute morphological parameters. The next step is to verify the model by utilizing historical flood data and actual 

flood occurrences that have been observed in order to evaluate its accuracy and dependability. After it has been 

verified, the model may be utilized for the purpose of flood prediction and risk assessment in situations that occur in 

real time or near real time. The prediction capabilities of the model may be improved and the model can be adapted to 

changing environmental conditions if stakeholders continually update the data that is input into the model and refine the 

algorithms that are used in the model. Furthermore, the method that is based on privatization makes it possible for 

governmental agencies, private firms, and research institutes to work together on a continuous basis in order to improve 

flood risk management techniques and come up with novel solutions. There is a viable strategy for enhancing flood risk 

management that involves the creation and deployment of a flood forecasting model that is based on privatization and 

uses a morphological and geographic information system-based approach. This model is able to produce flood 

predictions that are more complete and precise because it makes use of the experience and resources of both the public 

and commercial sectors. As a result, it improves both disaster preparedness and the resilience of infrastructure. Further, 

the use of geographic information system (GIS) technology enables spatial analysis, data visualization, and cooperation 

among stakeholders, which makes the model an invaluable instrument for decision-makers in areas that are prone to 

flooding events. Flood forecasting models that are based on privatization have the potential to drastically lessen the 

damage that floods has on communities and infrastructure if they are continuously refined and collaborated on.  

 

II. MATERIALS AND METHODS 
 

Zaria, which is located in Kaduna State, Nigeria, includes the study area. There are around 670 meters of elevation 

above mean sea level in Zaria, which is one of the provinces that are included in the Central High Plains of Northern 

Nigeria regions. It is situated around 950 kilometers distant from Lagos, and it encompasses a total surface of 

approximately 61 kilometers squared. As a result of its locational features, it assumes the role of a nodal point in terms 

of road and rail transportation.  

 

This study's data, as well as the sources from which they were obtained, are presented in Table 1. The data on the 

channel cross-section was gathered by means of a topographical survey that was produced with the assistance of Total 

Station (Tables S1 and S2). For the purpose of driving the HEC-HMS and HEC-RAS models, climate and geographical 

data were collected and exploited. The United States Geological Survey (USGS) Global Visualization Viewer GLOVIS 

was used to acquire the Landsat 8 Operational Land Imager (OLI), which has a spatial resolution of thirty meters. The 
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supervised classification approach was utilized in order to accomplish the land use classification, and the onsite data 

was utilized in order to assess the classification. Both ground truthing and a comparison of the data collected in the 

field were utilized in order to evaluate the correctness of the LULC map. In order to determine the accuracy of the 

producer, the user, and the kappa (with a kappa index of 96%), a confusion matrix was built. Data for the digital 

elevation model (DEM) of the Shuttle Radar Topography Mission (SRTM) were obtained from GLOVIS and had a 

spatial resolution of 30 meters. The Food and Agricultural Organization (FOA) was the source of the data for the soil 

map. A time series of the climatic data, which included rainfall data from the Zaria station of the Nigerian College of 

Aviation Technology, was received from the Nigerian Meteorological Agency (NiMet). This time series spanned the 

period from 1967 to 2017 (that is, fifty years of data).  

 

Table 1. Data type and sources of the data. 
 

S/N Data Category Data Type Data Source 

1 Satellite imagery(Landsat8OLI) Land use data(30m) United State Geological Survey (USGS) 

2 GIS data SRTMDEM(30m) United State Geological Survey (USGS) 

  Slope  

3 Meteorological data Rainfall data Nigerian Meteorological Agency(NiMet) 

 Observed discharge data  

4 Geomorphological data Soil data(10m) Digital World Soil Map(FAO) 

5 Ancillary data Channel cross-section and elevation data Field(Topographical survey) 

 
III. INTENSITY DURATION FREQUENCY CURVE IDF 

 

The production of an intensity duration frequency curve, also known as an IDF, is the initial stage in the HEC-HMS 

hydrologic modeling process when the frequency storm approach is utilized. The maximum discharges, denoted by the 

symbol Qmax, were calculated for a variety of return durations. The method that was proposed by the Indian 

Meteorological Department was used to lower the maximum daily (24-hour) precipitation data for Samaru from 1968 

to 2017. The data was then reduced to a shorter time scale of 10, 20, 30, 60, 120, 360, 720, and 1440 minutes. The 

formula has reached widespread acceptability and has been utilized by a large number of people. 

 
Equation (1) provides the result of the needed precipitation depth, which is less than twenty-four hours. 

 

 
 

In this equation, Pt represents the needed precipitation depth for a period of fewer than 24 hours in millimeters, P24 

represents the daily precipitation depth in millimeters, and t represents the required time length in hours. For the 

purpose of determining the intensity, duration, and frequency curves of the Samaru stream watershed, crucial input data 

for the HEC-HMS simulation and Gumbel's statistical distribution for frequency analysis were relied upon. Frequently, 

this technique is utilized for the purpose of forecasting extreme hydrological occurrences, such as floods. The following 

is the formula that represents the cumulative distribution function (cdf) of the Gumbel extreme value distribution 

(maximum): 
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In this equation, the probability distribution function of a random variable x is denoted by F(X), and the reduced variate 

is identified by y. There is a correlation between the return period (T) and the chance of exceeding the mark. Therefore, 

the likelihood of exceeding the occurrences that are excluded is as follows: 

 

 
 

where F1(X) = the probability of exceedance at a return period (T), and T = the return period. 

 

IV. MODEL SETUP AND EVALUATION 
 

 
 

Figure 1. A flowchart depicting the methodology: 
 
HEC-HMS Model 
Information that is pertinent to the physical characteristics of a watershed is included in the HEC-HMS basin model. 

This information includes the basin area, river reach connectivity, and reservoir statistics, among other things. Four of 

these components are included in the model of the Samaru basin, which was created in Arc-GIS with the help of the 

HEC-GeoHMS extension. There are a total of 18 hydrologic elements that were developed for the Samaru model. This 

model is comprised of nine sub-basins, four river reaches, four junctions, and one outlet (which is located at the 
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location where the Samaru stream empties into the Malmo River). Despite the fact that the meteorological model was 

constructed on the basis of the climatic data of the geographic region under investigation, the control parameters were 

subsequently established. Hourly time intervals were chosen in this investigation, and the simulation was only carried 

out for a period of two days. The temporal magnitude of the streamflow that was observed was taken into consideration 

while selecting this time. In order to calibrate and validate the HEC-HMS model for the Samaru watershed, the daily 

discharge data from August and September 2014 were utilized. These data were gathered from a gauge station that was 

situated at the outflow of the watershed. We chose the data from August and September because we are interested in 

peak discharge, and during those months of the year, the watershed often sees flood events. This is the reason why we 

chose those months. During the process of calibrating the model parameters, an auto-optimization procedure and the 

peak weighted root mean square error (PWRMSE) were used to make up the objective functions in the HEC-HMS 

model. This method was chosen because of its ease of implementation and its very high level of performance. In order 

to conduct a sensitivity analysis of the model parameter, the values of the different model parameters were varied by a 

margin of error of twenty percent at intervals of five percent. The curve number, the lag time, the % imperviousness, 

and Muskingum K were the characteristics that were determined to be accurate. A graph was created to illustrate the 

percentage change in the simulated peak flow and volume that occurred as a consequence of changes in the parameters 

of the corresponding models. The performance of the model was evaluated by utilizing statistical hydrologic indicators 

that measured the degree of agreement between the runoff values that were observed and those that were simulated. 

The root mean square error (RMSE), the Nash–Sutcliffe efficiency (NSE), and the percentage bias (PBIAS) were the 

indices that were utilized. 

 

 

 

 
 
in where Qobs represents the observed storm runoff in millimeters, Qcomp represents the computed runoff in 

millimeters, Qabs represents the mean observed storm runoff in millimeters, N represents the total number of rainfall 

runoff events, and i represents an integer that can range from one to N. 

 

HEC-RAS Model 
Geometric data, flow data, and plan data are the three primary components that were required for the construction of 

the HEC-RAS model, which was a procedure that was carried out in two stages. The conversion of flow values into 

water surface elevation along the stream was the goal of the hydraulic modeling process. The HEC RAS solves the 

energy equation by employing the conventional step-backwater approach to compute the water surface profiles of 

consecutive channel cross-sections. This allows the problem to be solved. It is the energy equation that is shown in 

Equation (16). The construction of a river system schematic, which includes the connectedness of the river system, is a 

part of the geometric data. By entering cross-section data, which required defining all of the essential junction 

information, adding hydraulic structures, and interpolating cross-sections, it was possible to accomplish this goal. 

Following the completion of the river schematic procedure, the data for the cross-section were input. A geometric 

boundary was established for the stream based on the cross-sectional data. From Ganga Uku to the ABU detention 

basin, the cross-sections were measured at a variety of typical places at various points. The selection of the roughness 

coefficient offered by Manning requires judgment, skills, and subjectivity for the user. provided in-depth images of 

natural streams and rivers, along with the roughness levels that corresponded to each of these characteristics. An 

evaluation of the Samaru stream main channel and the Barnes standard pictures was used to determine the "n" value 

that was assigned by Manning. This evaluation was based on field observations. Following the outcome of the 

comparison, the roughness value was determined to fall somewhere in the range of 0.035 to 0.03, and it was chosen for 
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the main channel of the Samaru stream. It was necessary to manually insert the expansion and contraction coefficients 

into the HEC RAS cross-section data editor. The United States Army Corps of Engineers provides typical values for 

expansion and contraction coefficient-based flow transition types. It was determined that the transition was gradual, and 

default values of 0.3 and 0.1 were assigned for the expansion and contraction coefficients, respectively, based on the 

knowledge of the physical features of the stream. Seven different sets of discharge data were input for the return 

periods of two years, five years, ten years, twenty-five years, fifty years, one hundred years, and two hundred years. 

These data were collected from the outputs of the HEC HMS model. It was decided that the critical depth would serve 

as the upstream boundary condition, and the channel slope would serve as the downstream boundary condition. 

Following this decision, a steady flow study was carried out. 

 

 
 

In this equation, the variables y1 and y2 represent the water depths in the two cross sections, Z1 and Z2 represent the 

heights of the main channel above the datum, v1 and v2 represent the average speeds, α1 and α2 represent the velocity 
weighting coefficients, g represents the acceleration due to gravity, and he represents the head loss of energy to the 

level of the head. 

 
Hydraulic Evaluation 
The floods that were simulated by the HEC-HMS program for a variety of return durations were used as flow data in 

the HEC-RAS for surface water profiles and velocity computations. In addition, fundamental parameters were required 

for hydraulic assessment. Through the utilization of the HEC-HMS and HC-RAS outputs, the Samaru stream was 

specifically constructed to have the most cost-effective channel segment. The part of the channel that Chow considers 

to be the most economically viable is the one in which the most discharge results in the least amount of wetted 

perimeter. In order to compute the channel dimension, the equation developed by Manning was utilized, and a free 

board that was twenty percent of the usual flow depth was taken into consideration. It was determined whether or not 

the channel was stable by following the process that Muhammad et al. suggested performing. It was first determined 

how to compute the mean velocity and the tractive stress. Following that, an evaluation of the current stability was 

accomplished by contrasting the estimations of the local and instantaneous shear velocities with the values of the 

velocity. If it was determined that the current circumstances were stable and that they were in conformity with the other 

project objectives, then the channel was declared stable, and it was not necessary to do any more investigation. 

 

V. RESULTS AND DISCUSSION 
 

The IDF for the Samaru watershed was built by utilizing daily rainfall data for a period of fifty years. Small time 

increments were used to discretize the data on the highest daily rainfall that occurred during each year. With regard to 

the analysis of flood frequency, the Gumbel distribution was utilized. Table 2 provides information on the amount of 

rainfall that occurred during various return periods at various time steps, whereas Figure 4 illustrates the IDF curve of 

the Samaru stream watershed. A correlation was found between the return period and the rainfall depth, as seen in both 

Table 2 and Figure 4. The rainfall depth rose as the return period increased. For the purpose of peak flow simulation at 

a variety of return periods, the IDF and the return period were utilized as inputs in the meteorological model of HEC-

HMS. 

 

Table 2. Values for intensity, frequency, and duration for occurrences that last for twenty-four hours. 
 

Estimated Rainfall Intensity (mm/h) for Different Return Periods 

Duration 

(Minutes) 

2Years 5Years 10Years 25Years 50Years 100Years 200Years 400Years 1000Years 

5 129 222 283 361 419 476 533 589 665 

10 82 140 179 227 264 300 336 371 419 
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15 62 107 136 174 201 229 256 283 319 

30 39 67 86 109 127 144 161 179 201 

60 25 42 54 69 80 91 102 112 127 

120 16 27 34 43 50 57 64 71 80 

180 12 20 26 33 38 44 49 54 61 

 
Table 3. Cont. 

 
Estimated Rainfall Intensity (mm/h) for Different Return Periods 

Duration 

(Minutes) 

2Years 5Years 10Years 25Years 50Years 100Years 200Years 400Years 1000Years 

300 8 14 19 24 27 31 35 38 43 

360 7 13 16 21 24 27 31 34 38 

720 5 8 10 13 15 17 19 21 24 

1440 3 5 7 8 10 11 12 14 15 

 
 

Figure 2. A curve representing the IDF of the Samaru watershed. 
 
HEC-HMS Parameters Sensitivity Analysis 
A sensitivity analysis of the model was carried out in order to ascertain which of the model's parameters had a 

substantial impact on the results produced by the model. With the use of sensitivity analysis, a ranking was established 

for the number of model parameters that contributed to an overall inaccuracy in the predictions made by the model. For 

the purpose of conducting sensitivity analysis, the model's four (4) parameters were examined. A check was performed 

on the curve number, impervious area, lag duration, and Muskingum K at intervals of 5% and a ±20% increment. As 
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can be seen in Figure 5, the curve number was located to be the parameter that exhibited the highest degree of 

sensitivity. A twenty percent rise in the curve number resulted in a thirteen percent increase in the peak discharge, 

while a twenty percent drop in the curve number resulted in a twelve point one percent decrease in the peak discharge. 

It is the most sensitive parameter because it is dependent on land use, hydrological soil types, and antecedent moisture 

conditions, which are recognized to be the most significant elements in runoff generation. This is the reason why it is 

the most sensitive parameter. Additionally, it was discovered that lag time is sensitive, as it has a tendency to raise the 

peak discharge by 7.2% when it is extended by 20%, and it has a tendency to lower the peak discharge by 6.8% when it 

is shortened by 20%. The deviation of these parameters from the starting point is seen in Figure 6. 

 

 
 

Figure 3. A sensitivity analysis was performed on a simulation with a return period of one hundred years. 
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Figure 4. There are two parts to hydrographs, the first being the calibration and the second being the validation. 
 

HEC-HMS Model Calibration, Validation, and Performance Evaluation 
It was discovered that the model was sensitive to the curve number (CN), the lag period, and the Muskingum K 

measure. Through the process of auto-optimization of the model's sensitive parameter, the HEC-HMS model 

calibration was successfully accomplished. Three of the parameters that were optimized were the Muskingum K, the 

lag time, and the curve number. In order to optimize the model output, the optimization procedure was carried out on 

parameters that were sensitive as well. The starting values of the sensitive parameters of the model are presented in 

Table 3, along with their optimized values. 

 

Table 4. For the HEC-HMS model, the initial and optimized parameters are as follows:. 
 

Element Parameter Units InitialValue OptimizedValue 

AllSub-basins SCS Curve Number—Initial Abstraction Scale 

Factor 

 1 1.1603 

AllSub-basins SCS Curve Number—CurveNumberScaleFactor  1 0.98729 

W120 SCS Curve Number—CurveNumber  92.66304 75.453 

W110 SCSCurveNumber—CurveNumber  88.41209 56.694 

W100 SCSCurveNumber—CurveNumber  89.13062 41.733 

W180 SCSCurveNumber—CurveNumber  84.12308 84.421 

W170 SCSCurveNumber—CurveNumber  80.13656 73.511 

W160 SCSCurveNumber—CurveNumber  91.75 70.627 

W150 SCSCurveNumber—CurveNumber  90.01976 63.081 

W140 SCSCurveNumber—CurveNumber  81.43609 52.916 

W130 SCSCurveNumber—CurveNumber  83.84741 55.924 

W120 SCSUnitHydrograph—LagTime MIN 16.66416 13.776 

W110 SCSUnitHydrograph—LagTime MIN 163.1303 156.74 

W100 SCSUnitHydrograph—LagTime MIN 76.08306 81.507 

W180 SCSUnitHydrograph—LagTime MIN 141.1654 163.75 
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W170 SCSUnitHydrograph—LagTime MIN 79.06074 88.216 

W160 SCSUnitHydrograph—LagTime MIN 4.1292 4.8915 

W150 SCSUnitHydrograph—LagTime MIN 81.23118 100.31 

W140 SCSUnitHydrograph—Lag Time MIN 62.38896 79.1 

W130 SCS Unit Hydrograph—Lag Time MIN 67.54464 84.897 

R90 Muskingum—K HR 0.1 0.35946 

R80 Muskingum—K HR 0.11 0.34604 

R50 Muskingum—K HR 0.11 0.2658 

R40 Muskingum—K HR 0.1 0.16622 

 
The discharge data from August 2014 were utilized for the calibration, which comprised the period beginning on 

August 1 and ending on August 31, 2014. The calibration demonstrated a high degree of concordance between the 

simulated outflows at all junctions, including the outlet. The hydrograph patterns that were formed by the observed 

outflows and the time it took for them to reach their peak were quite similar, as can be seen in Figure 6. A comparison 

of the root mean square error standard deviation (RMSE), the Nash–Sutcliffe coefficient (NSE), and the percentage 

bias (PBIAS) before and after optimization is shown in Table 4. Additionally, the simulated peak discharge and the 

total volume at the outlet were 5.3 m3/s and 583.1 mm before optimization, and they were 4.1 m3/s and 401.7 mm after 

optimization. On the other hand, when the root mean square error (RMSE), Nash–Sutcliffe coefficient, and percentage 

biases were all under the acceptable threshold limit, the performance of the model dramatically increased. 

 

Table 5. indications of performance throughout the verification process. 
 

Performance  Calibration   Validation 

Indices Before Optimization Remark After Optimization Remark  Remark 

RMSE 0.9 Unsatisfactory 0.6 Good 0.5 Good 

NSE 0.27 Poor 0.67 Very Good 0.78 Very Good 

PBIAS 50.6% Very Poor 20.5% Satisfactor

y 

20.8% Good 

 

By using the daily discharge data for the month of September 2014, which covered the period from September 1 to 

September 30, the model was determined to be accurate. Through the process of running the calibrated model with the 

events that occurred in September 2014 (Figure 6), the validation was accomplished. The validation reveals that the 

observed and simulated outflows at the watershed exit are quite similar to one another; nonetheless, it failed to account 

for the peak discharge to the same extent as it should have. On the basis of the model performance indicators, the result 

was quite comparable to the result that was produced during the calibration session. Table 4 displays the results of the 

validation, which showed that the RMSE, NSE, and PBIAS were respectively 0.50, 0.78, and 20.8%, suggesting that 

the performance was extremely excellent. Using the HEC-HMS model, our findings are in good agreement with those 

obtained by Derdour et al. [51], who modeled the Boukhalef watershed in Morocco. They worked on the Ain Sefra 

watershed and the Ksour Mountains (SW Algeria), and they modeled the Boukhalef watershed. Additionally, other 

researchers utilized the SCS-CN approach for the purpose of simulating rainfall runoff, and the findings of their model 

performance were comparable to the results achieved in this research. 

 

Simulation of Peak Runoff 
Table 5 displays the simulation results of the HEC-HMS model when the frequency storm method is used for periods of 

two years, five years, ten years, twenty-five years, fifty years, one hundred years, and two hundred years at the 

upstream (Ganga Uku culvert), the NUGA gate culvert, towards the outlet (Dan Fodio culvert), and the watershed 

outlet in cubic meters per second. when a consequence of the findings, it was discovered that the discharge rises when 

the flow length is increased. Specifically, this is due to the contributions that the river gets from subbasins that are next 
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to it. To give an example, the highest flow at the NUGA gate culvert for a return period of fifty years was 14.3 m3/s. 

This is lower than the peak discharge of 27.3 m3/s at the Dan Fodio culvert, which is located downstream of the NUGA 

gate culvert. The reason for this is because the stream is able to take runoff from the impervious surfaces of Dan Fodio 

by way of the tributary that is located upstream of the Dan Fodio culvert. Since the peak discharge was found to 

increase with an increase in the return time, the result also follows a normal pattern of hydrological analysis. This is 

because the return period was observed to increase. 

 

Table 6. The maximum discharges measured in cubic meters per second at a particular place of interest. 
 

Location 2-Year 5-Year 10-Year 25-Year 50-Year 100-Year 200-Year 

Ganga Uku(upstream) 2.9 5.4 7.1 9.4 11.1 12.8 14.6 

NUG Agate culvert 3.7 6.8 9.1 12.1 14.3 16.6 19 

Mid-section 5.7 11 14.9 20 23.9 27.8 31.8 

Dan Fodio culvert 

(Towardstheoutlet) 

6.3 12.4 16.9 22.8 27.3 31.8 36.4 

Outlet 7.5 14.9 20.3 27.3 32.6 38 43.5 

 

Figure 7 depicts the flood hydrograph for the 100-year Tr at the NUGA gate culvert and the watershed outflow. This 

hydrograph was taken at the watershed outlet. The form of the flood hydrographs is comparable to the shape of the ones 

that were acquired, as can be seen in the image. 

 

 
 

Figure 5. The flood hydrograph of the 100-year Tr is obtained at two locations: (a) the NUGA gate culvert and 
(b) the watershed outflow. 

 
VI. CONCLUSION 

 

A significant step forward in flood risk management techniques is represented by the creation and execution of a flood 

forecasting model that is based on privatization and makes use of a morphological and geographic information system-

based approach. This model makes use of the knowledge and resources of both the public and commercial sectors in 

order to generate flood forecasts that are more accurate, comprehensive, and timely. As a result, it improves both 

disaster preparedness and the resilience of infrastructure. With the incorporation of private data sources and cutting-

edge GIS technology, the privatization-based approach provides enhanced capabilities for spatial analysis, which in 

turn enables the identification of sensitive regions with a higher degree of precision. As a result of this improved 

predictive capabilities, stakeholders are able to more efficiently allocate resources, prioritize mitigation initiatives, and 

design emergency response plans that are specifically targeted. Because of the collaborative character of the 



© 2024 IJIRCCE | Volume 12, Issue 8, August 2024|                                     DOI: 10.15680/IJIRCCE.2024.1208065 

  

IJIRCCE©2024                                                                    |     An ISO 9001:2008 Certified Journal   |                                    10699 

privatization-based strategy, it encourages continual innovation and the sharing of information between research 

institutions, private firms, and public bodies. This partnership not only improves the forecasting capacities of the 

model, but it also encourages the creation of creative solutions for the control of flood risk. Continued improvement 

and validation of the flood predicting model that is based on privatization are important in order to guarantee the 

model's accuracy and dependability in situations that occur in the real world. A further enhancement of the model's 

efficiency and scalability will be achieved by the implementation of initiatives that encourage the sharing of data, the 

standardization of procedures, and the interoperability of GIS systems. The flood prediction model that is based on 

privatization is an encouraging instrument that has the potential to handle the issues of flood risk management in areas 

that are prone to flooding. This strategy has the ability to drastically lessen the damage that flooding has on 

communities, infrastructure, and the environment. It does this by utilizing the capabilities of both the public and private 

sectors, as well as by harnessing the power of sophisticated geographic information system technologies. 
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