

International Journal of Innovative Research in

Computer and Communication Engineering
(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

 Impact Factor: 8.771 Volume 13, Issue 3, March 2025

© 2025 IJIRCCE | Volume 13, Issue 3, March 2025| DOI: 10.15680/IJIRCCE.2025.1303125

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 2716

Soccer Match Strategy Scheduling Based on

NAO Robots

Aya Taourirte*, Li-Hong Juang

School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China

ABSTRACT: Intelligent robots especially NAO robots are expected to play an important role in various vertical
industries and robot soccer match is an effective method for the research of multi-agent systems (MAS). Due to the highly
dynamic and complex environment of the football field and the requirements for the real-time action of robot players,
the optimization of robot strategy scheduling is recognized as an essential component of robot soccer match.
Nevertheless, state-of-the-art decision-making on robot action scheduling can suffer from the processing of huge amount
of date and the interaction between robots. To handle this issue, this paper proposes a robot soccer match strategy
scheduling scheme, based on reinforcement learning (RL). We propose to formulate the decision-making problem of
robot action scheduling as a Markov decision process (MDP), i.e. the basis of developing algorithms of deep Q-network
(DQN) and proximal policy optimization (PPO). In order to strengthen the cooperation between robot players, we apply
client-server (C-S) architecture to achieve efficient communication and joint scheduling between robot players. The
simulation results confirm that the proposed algorithm is cable of learning a scheduling policy in the presence of a robot
soccer match and significantly optimizing the robot action decision-making problem.

I.INTRODUCTION

The rapid development of intelligent robots has witnessed the success of applying intelligent robots in

various vertical industries such as industrial automation [1], [2], medical services [3], [4] and intelligent agriculture
[5]. Particularly, the NAO robot (a humanoid intelligent robot), designed and developed by Aldebaran Robotics,
integrates sensors, a vision system, and a control system into a single platform. It is the most widely used fully
autonomous humanoid robot in academic research to date [6]. In recent years, scholars have conducted research
on multi-agent collaboration and planning through robot soccer. The NAO robots play a crucial role as one of
the most commonly used robots for studying robot soccer [7], [8].

In robot soccer matches, team strategies are one of the key factors influencing the outcome of the game.

Consequently, many researchers focus on optimizing team strategies and robot path planning. Ref. [9] focused on
team strategies by optimizing underlying motions and action chains to enhance the smooth execution of actions
by robot players during matches. Ref. [10] utilized artificial neural networks (ANNs) to optimize the offensive
and defensive strategies of robot player agents while incorporating RL algorithm models into the behavioural
decision-making modules of the robot player agents. Ref. [11] employed model-based collaborative filtering
techniques to determine the optimal team strategies and used feature selection algorithms to identify the strateg ies
with the greatest impact on the final match outcomes. Applying these methods to robot soccer matches improved
team performance by over 35%.

However, robot soccer matches take place in a dynamic and uncertain field environment, making it challenging

for team strategy optimization to cope with highly dynamic conditions. Consequently, robot player agents must
be capable of making appropriate decisions in real time and at high speed. Therefore, how players make action
decisions has become one of the key focuses of research. Ref. [12]–[14] utilized genetic algorithms to improve
the evaluation functions for players’ action execution behaviours, significantly enhancing their ability to perform
actions. Ref. [15] applied unsupervised learning algorithms, such as clustering, and supervised learning
algorithms to the design of robot players’ underlying actions. Meanwhile, ref.

[16], [17] utilized reinforcement learning algorithm models to optimize robot players’ shooting actions and predict
the overall state behaviour of ball-holding players. These methods were further applied to improve players’
field of vision selection.

© 2025 IJIRCCE | Volume 13, Issue 3, March 2025| DOI: 10.15680/IJIRCCE.2025.1303125

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 2717

This paper investigates a robot soccer match, as shown in Fig.1. Multiple robot player agents interact with each
other in a highly dynamic field environment, forming a complex dynamic Nao robots action scheduling decision-
making problem. As a countermeasure, we exploit RL to solve the robot players decision-making problem. We
utilize the deep Q-Network (DQN) architecture for action determination and employ deep neural networks for
parameter learning. Simultaneously, we propose a proximal policy optimization (PPO) algorithm based on the
actor-critic (AC) architecture, to address the limitations of DQN in terms of convergence speed and stability. This
helps mitigate performance degradation of DQN in continuous and highly dynamic environments. Meanwhile,
we utilize client-server (C-S) architecture to enhance communication and collaboration among robot players.
Simulation results confirm that proposed algorithm can converge and enable the robot to perform well in the
competition. The comparison between AC approach with PPO and the DQN approach indicates that PPO theory
can benefit the dynamic scheduling in the presence of many agents and complex environment.

Fig. 1. 4v4 NAO Robots Soccer Match.

II. PRELIMINARY

This system controls a group of Nao robots to autonomously make decisions in a football field, completing a

4v4 football match. In this system, we employ reinforcement learning algorithms to assist the robots in playing
the football game. Additionally, robots within the same team communicate with a server, which makes decisions
based on the current state of the game. These decisions specify the actions that each robot should take in the
next time step, facilitating teamwork among the robots of the same team.

A. Robot Behaviour Determination

In this system, there are two teams: the Blue team and the Red team. The robots in each team are denoted by n,

where n ranges from 0 to 4. We define the position of the robot as (, ,)n n n np x y z= , the position of the ball as

goal goal goal(,)p x y= , and the position of the goal as target target target(,)p x y= . The Nao robot determines its

orientation n using its own inertial measurement unit (IMU). The orientation between the robot and the ball is

calculated as
goalgoal

goal

arctan
n

n

n

y y

x x


−
=

−

 
  
 

 based on the coordinates of the two points. We need to calculate the

deviation between the robot's orientation and the orientation between the robot and the ball to determine whether the

© 2025 IJIRCCE | Volume 13, Issue 3, March 2025| DOI: 10.15680/IJIRCCE.2025.1303125

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 2718

robot needs to rotate. The orientation deviation between the two can be defined as
goal

n n n   = − . If rad| |n b  ,

the robot is considered to be facing the ball; otherwise, the robot needs to rotate, where radb is the orientation deviation

threshold. At the same time, the robot needs to determine whether it has control of the ball through the distance

between the robot and the ball, as well as the orientation deviation. The result of this decision 1 2 3 4_ [, , ,]if c c c c c= ,

will serve as a state variable that influences the decisions of other robots on the same team. We calculate the distance

between the ball and the robot
2 2

goal goal() ()n n nd x x y y= − + − . If n dd b where db is the distance threshold

and rad| |n b  , robot n has control of the ball, and set 1nc = , otherwise 0nc = . The robot n also needs to

perform a shooting judgment. We define _ _goal x width and _goal dis as the width of the goal and the distance

from the goal to the field, respectively. We simultaneously define goal

_ _

2

goal x width
x  and

goal(_ 1) _goal dis y goal dis−   as the shooting distance condition, meaning that the ball is within the goal

range and sufficiently close to the goal. Under these conditions, the shooting distance requirement is satisfied;
Meanwhile, a shooting angle condition needs to be set. When robot n has control of the ball, the angle between the

robot and the goal
targettarget

target

arctan
n

n

n

y y

x x


 −
=   − 

, as well as the angle between the ball and the goal

target goaltarget

goal

target goal

arctan
y y

x x


 −
=   − 

, are calculated, and the deviation between the two is
target target target

goaln n   = − .

Thus, the shooting angle condition is
target

shootn b  , where shootb is the shooting angle threshold, meaning that the

robot, the ball, and the goal are approximately aligned along a straight line. When both the shooting distance condition
and the shooting angle condition are satisfied, the robot will perform the shooting action.

B. Gait Planning and Error Compensation for Nao Robots
When performing gait planning for the Nao robot, after determining the position of the ball, the robot should be able

to walk to a position close to the ball. Typically, we use the (, ,)MoveTo x y theta function, setting the X and Y

coordinates, as well as the robot's angle around the Z-axis, to make the robot start walking. However, experiments have
shown that with this walking function, the robot's gait is unstable, and when walking a long distance, there can be
significant deviation from the target position. To address this issue, we control the gait parameters of the Nao robot to

reduce errors during walking. We use the setFootSteps function to customize the robot's gait parameters, adjusting

the step distance to stabilize the robot's walk. The function's input parameters are [, ,]x y  , which represent the distance

in the X and Y directions between the left and right foot after a step, as well as the rotational angle around the Z-axis.

Experiments showed that setting the gait parameters to [0.15,0.1,0] results in a step length of approximately 0.1m

per step. When the step distance is greater than $0.1m$, the robot uses the setFootSteps function to walk; when the

step distance is less than $0.1m$, the robot uses the MoveTo function. The error compensation strategy ensures that

the Nao robot can move towards the target position with minimal error.

C. Communication Architecture and Team Collaboration
To facilitate efficient decision-making and enhance team collaboration among robot players, we employ a

Client-Server (C-S) architecture as shown in Fig.2 in our robot soccer match system. This design enables seamless
communication between individual robots (clients) and a centralized server. Each robot observes the environment
to extract its state, which is then transmitted to the server.

© 2025 IJIRCCE | Volume 13, Issue 3, March 2025| DOI: 10.15680/IJIRCCE.2025.1303125

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 2719

Fig. 2. C-S architecture.

On the server side, RL algorithms are executed to process the received state data. The server evaluates the state

and reward sent back by robot players, generates optimal decisions for each robot, and transmits these decisions
back to the respective robots. The robots subsequently execute the actions, completing their tasks in the soccer
match.

This architecture strengthens communication between robots by leveraging the server as a centralized decision-
making hub, enabling improved coordination among teammates. The C-S architecture ensures that robots operate
cohesively, optimizing overall team performance in the dynamic soccer environment.

D. Robot Soccer Match Control Logic
The core goal of the match control logic in this study is to intelligently manage and control the robot football match,

including match time, score, player states, ball control, robot recovery, and field boundary detection. We implement
match management by inheriting the Supervisor class in Webots, which includes functions for robot movement, score
determination, and collision detection. Before the match begins, a series of initialization operations are carried out,
including setting the initial score, initializing robot positions, and resetting the ball's initial position. The positions of
the robots and the ball are stored in global variables, which are updated during the match. The current position of the
ball and its distance to the goal area are used to determine whether a goal is scored. If the ball is within the goal area
and sufficiently close to the goal, a scoring event is triggered. Each time a goal is scored, the score is updated

depending on which team scored, and the ballinitial method is called to reset the ball to the center of the field for

the next round.

During the match, the robots' states are monitored in real time, including whether the robot has fallen or needs to

stand up. The robot's Z-axis height is used to determine if it has fallen. If the robot falls (i.e., the Z-axis is below a set
threshold), a "get up" operation is triggered. This operation is implemented through the getup method, which

repositions the robot to a standing position. If the robot has fallen and the set recovery time (defined by

_ _stand up cost) has passed, the robot will automatically perform the getup operation and return to a standing

state. This process includes adjusting the robot's position and posture to ensure it can resume movement during the

match. After each ball control, the _check belong method is used to determine which team controls the ball,

ensuring that both teams do not have control of the ball simultaneously. Additionally, if a robot goes out of bounds, it
will be reset to a predetermined position. To ensure the fairness of the match, the robot's movement range must be
monitored, and the ball must remain within the field's boundaries. If the ball or robot goes out of bounds, the

_ _ _check out of bounds and _ _ _check out of pitch methods are triggered, and the system will

automatically adjust the positions of the robot and the ball to keep them within the designated area. Throughout the
match, the system periodically updates the match information, including the current score and which team has control.

After the match ends, the system will display a message on the screen using the setLabel method, indicating that

the match is over. The match ends when the pre-set time limit (e.g., 10 minutes) is reached. When the match time

expires, . ()robot step timestep enters the exit state, indicating that the match is over. To ensure coordination and

© 2025 IJIRCCE | Volume 13, Issue 3, March 2025| DOI: 10.15680/IJIRCCE.2025.1303125

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 2720

information synchronization among multiple robots, the system uses the Emitter class for data transmission. Whenever

location or state information needs to be transmitted, the sendmessage method sends the position data of all robots

and the ball to the server using the Emitter class, ensuring that all robots and the match state remain synchronized
during the match. As shown in Figure 3, the match logic control flow is illustrated.

Fig. 3. Long-term average reward as a function of timeslots

E. Problem Formulation

Aiming at optimizing the actions taken by the NAO robots, this study addresses the problem of optimizing the robot's
decision-making strategy for a football match. Intuitively, the decision-making on action scheduling turns out to be an
MDP with one objective, where the immediate reward can be therefore formulated as

()goal close controllogt t t tr r r r= − + + , where
goal

tr ,
close

tr and
control

tr represent the goal reward, the proximity to the ball

reward, and the ball control reward, respectively. Applying a logarithm to the reward helps smooth out large variations

© 2025 IJIRCCE | Volume 13, Issue 3, March 2025| DOI: 10.15680/IJIRCCE.2025.1303125

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 2721

in reward values, preventing overly large rewards from dominating the learning process. It ensures more balanced
learning by compressing extreme values, promoting stability and improving the efficiency of decision-making, especially

in multi-objective tasks. For such an MDP, the state in timeslot t can be formulated as
oppo

goal[, , ,]t cs P p if P= S ,

where 1 2 3 4[, , ,]P p p p p= ,
oppo oppo oppo oppo oppo

1 2 3 4[, , ,]P p p p p= and S represent the positions of the robots on the

same team and the opposing team and state space, respectively. The action scheduling action performed by robot n can

be obtained as ,n t na A , where
nA is the action space w.r.t. robot n. The actions robot n can take in a timeslot

include moving forward, turning left, turning right, shooting, and staying. By defining

4

1

n

n=

=A A , the action

scheduling policy can be expressed as : →S A .

In order to maximize the long-term average reward, an objective featuring discounted cost can be written as

0

t

t

t

R r


=

 
=  

 
E , where  represents the discount factor. Hence, the optimization of  can be formulated as

*argmax R =
. (1)

III. NAO ROBOT DECISION-MAKING OPTIMIZATION ALGORITHM

A. Action Scheduling with DQN
In multi-robot systems, particularly in task execution within dynamic environments, traditional rule-based or model-

based approaches may not cope with the complexity and uncertainty of the environment. Therefore, it is crucial to use
reinforcement learning methods to optimize the robots' decision-making. Deep Q-Network (DQN) is an algorithm that
combines deep learning with Q-learning, using deep neural networks to approximate the Q-function and overcoming the
limitations of traditional Q-learning when the state and action spaces are too large. In this paper, we employ DQN to train
the robot agents, enabling them to optimize decision-making through experience learning in complex environments.

DQN uses a multilayer perceptron (MLP) architecture, where the input is the current state and the output is the Q-

value for each possible action. The function __ __init initializes 5 fully connected layers, each created using

.nn Liner , which represents a linear transformation between the neurons in each layer. After each hidden layer, the

ReLU activation function .torch relu is applied. Finally, the output layer 5fc does not use an activation function. The

result of the output is the Q-value for each action, which represents the expected return for each action taken in the current
state.

During training, DQN uses Experience Replay and Target Network mechanisms to improve the stability of training.

To avoid instability in the model due to the correlation between consecutive state-action pairs (,)s a , DQN introduces

the experience replay mechanism. The experience replay pool stores the experience data collected from the agent's
interaction with the environment (state, action, reward, next state, and whether the episode is done). During training,
small batches of data are randomly sampled from the experience replay pool, breaking the correlation between the data
and improving the efficiency and stability of training. DQN also introduces the target network to calculate the target Q-
value, which ensures the stability of Q-value updates.

We set the parameters of the target network as n
−

. Parameter n
−

 is updated to the current parameters of the Q

network n , after a fixed number of steps. This helps to reduce the fluctuation of the target during training and improves

the stability of Q-value estimation. The goal of DQN is to minimize the mean squared error (MSE) between the Q-value

output by the Q network and the target Q-value. Let the current state be ts , the action taken be ,n ta , the reward be tr ,

the next state be 1ts + and the done flag be $done$.The target Q-value is

© 2025 IJIRCCE | Volume 13, Issue 3, March 2025| DOI: 10.15680/IJIRCCE.2025.1303125

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 2722

,

target 1 ,max (, ;) (1)
n t

t t n t n
a

Q r Q s a done += +   − , (2)

where  is the discount factor, which represents the degree of influence of future rewards. So the loss function is

, 1

,

2

, , , network , 1 ,() [((, ;) (max (, ;)))]
t n t t t

n t

n s a r s t n t n t t n t n
a

Q s a r Q s a   
+

−
+= − + EL .

(3)

We update the Q network parameters
n by calculating the gradient of the loss function

 ()
nn n n    −  L , (4)

where  is learning rate. The pseudocode of the proposed DQN algorithm is summarized in Algorithm 1.

Algorithm 1 Action Scheduling with DQN

1: Initialize: 1t = ; the learning rates  ; initial state s ; neural network parameters n ; experience

replay buffer memory ;

2: repeat

3: Robots observe the state ts and transmit ts to the server;

4: Server uses epsilon-greedy strategy to select actions for each robot;
5: For each robot
6: repeat

7: Robot n executes the action ,n ta , yield rewards tr , and observe the new state 1ts + and 𝑑𝑜𝑛𝑒 flag;

8: Store the ts , ,n ta , tr , 1ts + and 𝑑𝑜𝑛𝑒 in the memory ;

9: The robot action scheduling agents perform

,

target 1 ,max (, ;) (1)
n t

t t n t n
a

Q r Q s a done += +   − ;

10: Robot n computes the loss function

, 1
,

2

, , , network , 1 ,() [((, ;) (max (, ;)))]
t n t t t

n t

n s a r s t n t n t t n t n
a

Q s a r Q s a   
+

−
+= − + L E ;

11: Update Q-network parameters
n using gradient descent ()

nn n n    −  L ;

12: until All the robots has updated the Q-network parameters

13： 1t t + ;

14： until Stopping criteria

B. Action Scheduling Optimization with PPO based on AC
Although DQN performs exceptionally well in tasks with discrete action spaces, it has limitations in terms of stability

in continuous action spaces and policy optimization. In comparison, the PPO algorithm introduces a "clipping"
mechanism to effectively control policy updates, preventing excessively large parameter updates. This results in higher
stability and adaptability, particularly in dynamic tasks such as robot soccer games. This paper proposes a robot decision-
making optimization algorithm based on the AC (Actor-Critic) architecture, and improves the original AC framework by
incorporating the PPO algorithm.

First, PPO uses the data collected from the environment, such as states, actions, and rewards, to calculate the discounted

rewards at each time step

2

1 2

0

k

t t t t t k

k

R r r r r  


+ + +
=

= + + += . (5)

Specifically, the algorithm reverses the reward sequence and then uses the discount factor γ to iteratively
compute the return at each time step, so that the reward at each step takes into account future rewards. Next, PPO
normalizes the discounted rewards

© 2025 IJIRCCE | Volume 13, Issue 3, March 2025| DOI: 10.15680/IJIRCCE.2025.1303125

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 2723

norm t
t

R
R



−

= , (6)

where  and  represent the mean and standard deviation of all the discounted rewards, respectively. Normalization

is performed to ensure that the variance of the rewards does not become too large, preventing numerical instability during
training.

As the next step, PPO observes the state value ()tV s from the critic network, which represents the expected return

when following the current policy from state ts . The output of the critic network is an estimate of the state value. The

advantage function can be formulated as
norm ()t t tA R V s= − , (7)

which means how good the current action is relative to the state value estimated by the critic network. The larger the
advantage function, the better the current action is compared to other actions. When updating the policy, PPO computes
the probability ratio between the new and old policies

,

,

,

(|)
() exp(log log)

(|)
old

n t t

t t t old

n t t

a s
r prob prob

a s









= = − , (8)

where
old ,  represent old and current policy, and log tprob and ,log t oldprob represent the logarithmic

probabilities of action ,n ta under the current and old policies, respectively.

To ensure that the policy updates do not deviate too far and to prevent large updates from causing instability in training,
PPO uses a surrogate loss function

 𝐿𝐶𝑙𝑖𝑝(𝜃) = 𝐸𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), (1−∈ ,1+∈)𝐴𝑡] (9)

where 𝐶𝑙𝑖𝑝(𝑟𝑡(𝜃),1−∈ ,1+∈) constraines the probability ratio within the interval [1−∈ ,1+∈)]. This means that when

the probability ratio exceeds this range, PPO will use the clipped ratio to compute the loss. The clipped surrogate loss

restricts the update magnitude between 1−∈ 𝑎𝑛𝑑 1+∈, thereby preventing excessively large policy updates. ò is the

clipping parameter, which is typically set to 0.20. To further optimize the policy, PPO's loss function also includes a
value loss, which is calculated by minimizing the mean squared error between the state values estimated by the critic
network and the actual discounted rewards

norm 2() [(())]V

t t tL R V s = −E . (10)

In addition, to encourage exploration of the policy, PPO also includes an entropy loss, which can be written as

,

, ,() (|) log (|)
n t

n t t n t t

a

H a s a s    = − . (11)

This entropy loss term encourages the policy network's distribution to maintain a certain level of randomness, preventing
the policy from becoming overly deterministic, thereby reducing the risk of premature convergence. Therefore, PPO loss
function can be formulated as

CLIP

1 2() () () ()VL L c L c H    = + − , (12)

where 1c and 2c are the hyperparameters for the weights of the value loss and entropy loss, respectively. Through this

loss function, PPO can balance the policy update, the accuracy of the value function, and the exploration of the policy.
During training, gradients are calculated through backpropagation to minimize this loss function, and the parameters of
the policy network and critic network are updated using the Adam optimizer. The pseudocode of the proposed PPO
algorithm is summarized in Algorithm 2.

© 2025 IJIRCCE | Volume 13, Issue 3, March 2025| DOI: 10.15680/IJIRCCE.2025.1303125

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 2724

Algorithm 2 Action Scheduling Optimization with PPO based on AC

1： Initialize: 1t = ; the learning rates _lr actor , _lr critic ; initial state s ; neural network

parameters nw ,
n ; clipping parameter ∈𝑐𝑙𝑖𝑝

2： repeat

3： repeat

4： For each robot;

5： Robot n observe the state ts ;

6： For robot n , the action scheduling agents sample , ~ (| ;)n t n t na s  ;

7： In timeslot t , robots execute the actions ,n ta ;

8： The robots yield rewards tr and observe the new state 1ts + and ()tV s ;

9： The action scheduling agents perform

 𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸 𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)𝐴𝑡)] to calculate surrogate loss;

10： The action scheduling agents calculate mean squared error between the state values estimated

by the critic network and the actual discounted rewards
norm 2() [(())]V

n t t tL R V s = −E ;

11： The action scheduling agents calculate entropy loss

,

, ,() (|) log (|)
n n n

n t

n t t n t t

a

H a s a s    = − ;

12： The action scheduling agents calculate loss function
CLIP

1 2() () () ()
n

V

n n nL L c L c H    = + − ;

13： Robot n calculates gradients through backpropagation to minimize this loss function;

14： Updated the parameters of the policy network and critic network;

15： until All the robots has updated the parameters

16： 1t t + ;

17： until Stopping criteria

IV.SIMULATION RESULTS

In the simulations, each team has 4 NAO robots, the size of the football field is 6×4.5, and the goal size is 2.6×1. The

learning rate for the DQN network is 1 3e = − , and the exploration rate ∈= 0.3. In the PPO algorithm, the clipping

parameter is ∈𝑐𝑙𝑖𝑝= 0.2, discount factor 0.99 = . The learning rate of policy network is _ 3 4lr actor e= − , and

the value network is _ 1 3lr critic e= − . We conducted simulations in Webots R2023b.

In the simulations, we implemented DQN and PPO methods, to optimize the decision-making process of robot players.

The performance of both methods was evaluated in a simulated robot soccer environment. Fig. 4 illustrates the long-term
average reward. The plot shows that both the average rewards achieved by two RL methods gradually grow and finally
saturate as the number of timeslots increases. This observation confirms confirms that PPO converges to the optimal
strategy faster than DQN, and PPO achieves a higher final long-term average reward value, indicating that PPO has
higher training efficiency, better decision-making ability and more effective environmental learning. The faster
convergence speed of PPO can be attributed to its policy gradient based architecture, which allows for smoother updates
and more stable training in continuous and dynamic environments. In contrast, although DQN is effective in discrete
action spaces, its convergence speed is slower and performance is lower in complex football environments. The
comparison highlights the applicability of PPO in highly dynamic multi-agent scenarios such as robot soccer, where rapid
adaptation and precise tasks are required.

© 2025 IJIRCCE | Volume 13, Issue 3, March 2025| DOI: 10.15680/IJIRCCE.2025.1303125

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 2725

Fig. 4. Long-term average reward as a function of timeslots.

Fig. 5 and Fig. 6 respectively represent the long-term average rewards of four robots in the same team with DQN and
PPO. Like Fig. 4, these two figures also show that PPO has a faster convergence speed and can converge to higher values
compared to DQN. These two plots also illustrate that Robot R3 can converge to the highest value, Robots R2 and R1
converge to similar values, and Robot R4 converges to the lowest value. The different convergence values of the four
robots confirm the optimization of the cooperation of robot players. Due to Robot 1 being the main offensive player with
long-term ball control and shooting, it is able to converge to the highest value; Robots 2 and 3, as offensive players who
spend most of their time in the frontcourt, tend to converge to slightly lower values; Robot 4 plays a defensive role in the
backcourt for a long time, with less time for ball control and approach, so it will converge to the lowest value.

Fig. 5. Long-term average reward for each robot with DQN

© 2025 IJIRCCE | Volume 13, Issue 3, March 2025| DOI: 10.15680/IJIRCCE.2025.1303125

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 2726

Fig. 6. Long-term average reward for each robot with PPO

We conducted 50 games between two teams optimized with DQN, and then conducted 50 matches between two teams
optimized with PPO, with each game lasting 10 minutes. Table 1 shows the statistics of simulation test results. Table 1
demonstrates that using PPO to optimize robot decision-making can achieve better goal performance and more stable
ball control compared to DQN. And more passes can also indicate that using the PPO algorithm can promote cooperation
between robots.

TABLE I

MATCHES STATISTICS

 Average goals Ball control rate Average number of passes

PPO 4.32 82.9% 47.26
DQN 2.96 74.3% 22.34

Therefore, from the simulation results, whether from the perspective of long-term average reward convergence speed
and reward value, or from the optimization of player offensive performance and team collaboration in actual matches,
PPO algorithm can not only achieve decision-making for robots in highly dynamic environments, but also achieve better
optimization results compared to DQN.

V. CONCLUSIONS

This paper has proposed decision-making methods based on DQN and PPO to address the complex decision-making

problem of NAO robot players action scheduling. Simulation results shows that the proposed algorithms converge.
Moreover, in the presence of a highly dynamic environment, the comparison between the proposed algorithms illustrates
that the applying PPO in policy optimization is beneficial to dynamic scheduling in the robot soccer matches. PPO method
has faster convergence speed and can converge to a higher value compared with DQN method,, which means that PPO
method has better performance in optimizing robot player action decision-making.

REFERENCES

[1] M. Diprasetya, S. Yuwono, M. L ppenberg, and A. Schwung, “Integration of abb robot manipulators and robot
operating system for industrial automation,” in 2023 IEEE 21st International Conference on Industrial Informatics
(INDIN), 2023, pp. 1–7.

[2] X. Wang, S. Lv, H. Liu, and M. Jia, “Research and design of an intelligent transfer system based on industrial robot,”
in 2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control
Conference (IMCEC), vol. 6, 2024, pp. 1348–1352.

© 2025 IJIRCCE | Volume 13, Issue 3, March 2025| DOI: 10.15680/IJIRCCE.2025.1303125

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 2727

[3] Y. Xia, Q. Li, R. Huang, and X. Zhao, “Design of intelligent medical service robot based on raspberry pi and stm32,”
in 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), vol.
10, 2022, pp. 1577–1581.

[4] W. Wang, X. Liu, and C. Xu, “Design and implementation of medical service robot,” in 2023 IEEE 3rd International
Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), vol. 3, 2023, pp. 1219–1222.

[5] C. Zhai, T. Wang, Q. Xu, P. Zhang, W. Song, and C. Xie, “Research on the construction of intelligent agriculture
based on agricultural robots,” in 2023 6th International Conference on Mechatronics, Robotics and Automation
(ICMRA)(, 2023, pp. 71–75.

[6] A. Balmik, M. Jha, and A. Nandy, “Nao robot teleoperation with human motion recognition,” Arabian Journal for
Science and Engineering, vol. 47, no. 2, pp. 1137–1146, 2022.

[7] Z. Wang, Y. Zeng, Y. Yuan, and Y. Guo, “Refining co-operative competition of robocup soccer with
reinforcement learning,” in 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC), 2020,
pp. 279–283.

[8] R. Kuga, Y. Suzuki, and T. Nakashima, “An automatic team evaluation system for robocup soccer simulation 2d,”
in 2020 Joint 11th Interna- tional Conference on Soft Computing and Intelligent Systems and 21st International
Symposium on Advanced Intelligent Systems (SCIS-ISIS), 2020, pp. 1–4.

[9] H. Akiyama and T. Nakashima, “Helios base: An open source package for the robocup soccer 2d simulation,” in
RoboCup 2013: Robot World Cup XVII 17. Springer, 2014, pp. 528–535.

[10] T. Gabel and C. Roser, “Fra-united—team description 2018,” in RoboCup 2019 Symposium and Competitions:
Team Description Papers. Sydney, Australia, 2019.

[11] P. H. Abreu, D. C. Silva, J. Portela, J. Mendes-Moreira, and L. P. Reis, “Using model-based collaborative filtering
techniques to recommend the expected best strategy to defeat a simulated soccer opponent,” Intelligent Data Analysis,
vol. 18, no. 5, pp. 973–991, 2014.

[12] M. Prokopenko, P. Wang, and O. Obst, “Gliders2014: Dynamic tactics with voronoi diagrams,”
2014. [Online]. Available: https://api.semanticscholar.org/CorpusID:112517473

[13] “Gliders 2015 : Opponent avoidance with bio- inspired flocking behaviour,” 2015.
[Online]. Available: https://api.semanticscholar.org/CorpusID:8450405

[14] M. Prokopenko, P. Wang, O. Obst, and V. Jauregui, “Gliders 2016 :
Integrating multi-agent approaches to tactical diversity,” 2016. [Online]. Available:

https://api.semanticscholar.org/CorpusID:42354735
[15] T. Nakashima, H. Akiyama, Y. Suzuki, A. Ohori, and T. Fukushima, “Helios 2018 : Team description paper,”

2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:198184635
[16] N. Zare, M. Sarvmaili, O. Mehrabian, A. Nikanjam, S. H. Khasteh, A. Sayareh, O. Amini, B. Barahimi, and

A. Majidi, “Cyrus 2d simulation 2019 team description paper,” 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:232425078

[17] N. Zare, A. Sayareh, M. Sarvmaili, O. Amini, A. Soares, and S. Matwin, “Cyrus soccer simulation 2d team
description paper 2021,” arXiv preprint arXiv:2206.02310, 2022.

https://api.semanticscholar.org/CorpusID:112517473
https://api.semanticscholar.org/CorpusID:8450405
https://api.semanticscholar.org/CorpusID:42354735
https://api.semanticscholar.org/CorpusID:198184635
https://api.semanticscholar.org/CorpusID:232425078

 8.379

	Soccer Match Strategy Scheduling Based on NAO Robots

