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ABSTRACT: Intelligent robots especially NAO robots are expected to play an important role in various vertical 
industries and robot soccer match is an effective method for the research of multi-agent systems (MAS). Due to the highly 
dynamic and complex environment of the football field and the requirements for the real-time action of robot players, 
the optimization of robot strategy scheduling is recognized as an essential component of robot soccer match. 
Nevertheless, state-of-the-art decision-making on robot action scheduling can suffer from the processing of huge amount 
of date and the interaction between robots. To handle this issue, this paper proposes a robot soccer match strategy 
scheduling scheme, based on reinforcement learning (RL). We propose to formulate the decision-making problem of 
robot action scheduling as a Markov decision process (MDP), i.e. the basis of developing algorithms of deep Q-network 
(DQN) and proximal policy optimization (PPO). In order to strengthen the cooperation between robot players, we apply 
client-server (C-S) architecture to achieve efficient communication and joint scheduling between robot players. The 
simulation results confirm that the proposed algorithm is cable of learning a scheduling policy in the presence of a robot 
soccer match and significantly optimizing the robot action decision-making problem. 
 

I.INTRODUCTION 
 
The rapid development of intelligent robots has witnessed the success of applying intelligent robots in 

various vertical industries such as industrial automation [1],  [2], medical services [3], [4] and intelligent agriculture 
[5]. Particularly, the NAO robot (a humanoid intelligent robot), designed and developed by Aldebaran Robotics, 
integrates sensors, a vision system, and a control system into a single platform.  It is the most widely used fully 
autonomous humanoid robot in academic research to date [6]. In recent years, scholars have conducted research 
on multi-agent collaboration and planning through robot soccer. The NAO robots play a crucial role as one of 
the most commonly used robots for studying robot soccer [7], [8]. 

 
In robot soccer matches, team strategies are one of the key factors influencing the outcome of the game. 

Consequently, many researchers focus on optimizing team strategies and robot path planning. Ref. [9] focused on 
team strategies by optimizing underlying motions and action chains to enhance the smooth execution of actions 
by robot players during matches. Ref. [10] utilized artificial neural networks (ANNs) to optimize the offensive 
and defensive strategies of robot player agents while incorporating RL algorithm models into the behavioural 
decision-making modules of the robot player agents. Ref. [11] employed model-based collaborative filtering 
techniques to determine the optimal team strategies and used feature selection algorithms to identify the strateg ies 
with the greatest impact on the final match outcomes. Applying these methods to robot soccer matches improved 
team performance by over 35%. 

 
However, robot soccer matches take place in a dynamic and uncertain field environment, making it challenging 

for team strategy optimization to cope with highly dynamic conditions. Consequently, robot player agents must 
be capable of making appropriate decisions in real time and at high speed. Therefore, how players make action 
decisions has become one of the key focuses of research. Ref.  [12]–[14] utilized genetic algorithms  to improve 
the evaluation functions for players’ action execution  behaviours,  significantly  enhancing  their  ability  to  perform  
actions. Ref.  [15] applied unsupervised learning algorithms, such as clustering, and supervised learning 
algorithms to the design of robot players’ underlying actions. Meanwhile, ref. 

 
[16], [17] utilized reinforcement learning algorithm models to optimize robot players’ shooting actions and predict 
the overall state behaviour of ball-holding players. These methods were further applied to improve players’ 
field of vision selection. 
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This paper investigates a robot soccer match, as shown in Fig.1. Multiple robot player agents interact with each 
other in a highly dynamic field environment, forming a complex dynamic Nao robots action scheduling decision-
making problem. As a countermeasure, we exploit RL to solve the robot players decision-making problem.  We 
utilize the deep Q-Network (DQN) architecture for action determination and employ deep neural networks for 
parameter learning. Simultaneously, we propose a proximal policy optimization (PPO) algorithm based on the 
actor-critic (AC) architecture, to address the limitations of DQN in terms of convergence speed and stability. This 
helps mitigate performance degradation of DQN in continuous and highly dynamic environments.  Meanwhile, 
we utilize client-server (C-S) architecture to enhance communication and collaboration among robot players. 
Simulation results confirm that proposed algorithm can converge and enable the robot to perform well in the 
competition. The comparison between AC approach with PPO and the DQN approach indicates that PPO theory 
can benefit the dynamic scheduling in the presence of many agents and complex environment. 

 

 
 

Fig. 1.   4v4 NAO Robots Soccer Match. 
 

II.  PRELIMINARY 
 
This system controls a group of Nao robots to autonomously make decisions in a football field, completing a 

4v4 football match.  In this system, we employ reinforcement learning algorithms to assist the robots in playing 
the football game. Additionally, robots within the same team communicate with a server, which makes decisions 
based on the current state of the game. These decisions specify the actions that each robot should take in the 
next time step, facilitating teamwork among the robots of the same team. 

 
A.  Robot Behaviour Determination 

In this system, there are two teams: the Blue team and the Red team. The robots in each team are denoted by n, 

where n ranges from 0 to 4. We define the position of the robot as ( , , )n n n np x y z= , the position of the ball as 

goal goal goal( , )p x y= , and the position of the goal as target target target( , )p x y= . The Nao robot determines its 

orientation n  using its own inertial measurement unit (IMU). The orientation between the robot and the ball is 

calculated as 
goalgoal

goal

arctan
n

n

n

y y

x x


−
=

−

 
  
 

 based on the coordinates of the two points. We need to calculate the 

deviation between the robot's orientation and the orientation between the robot and the ball to determine whether the 
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robot needs to rotate. The orientation deviation between the two can be defined as 
goal

n n n   = − . If rad| |n b  , 

the robot is considered to be facing the ball; otherwise, the robot needs to rotate, where radb  is the orientation deviation 

threshold. At the same time, the robot needs to determine whether it has control of the ball through the distance 

between the robot and the ball, as well as the orientation deviation. The result of this decision 1 2 3 4_ [ , , , ]if c c c c c= , 

will serve as a state variable that influences the decisions of other robots on the same team. We calculate the distance 

between the ball and the robot 
2 2

goal goal( ) ( )n n nd x x y y= − + − . If n dd b  where db  is the distance threshold 

and rad| |n b  , robot n  has control of the ball, and set 1nc = , otherwise 0nc = . The robot n  also needs to 

perform a shooting judgment. We define _ _goal x width  and _goal dis  as the width of the goal and the distance 

from the goal to the field, respectively. We simultaneously define goal

_ _

2

goal x width
x   and 

goal( _ 1) _goal dis y goal dis−    as the shooting distance condition, meaning that the ball is within the goal 

range and sufficiently close to the goal. Under these conditions, the shooting distance requirement is satisfied; 
Meanwhile, a shooting angle condition needs to be set. When robot n  has control of the ball, the angle between the 

robot and the goal 
targettarget

target

arctan
n

n

n

y y

x x


 −
=   − 

, as well as the angle between the ball and the goal 

target goaltarget

goal

target goal

arctan
y y

x x


 −
=   − 

, are calculated, and the deviation between the two is 
target target target

goaln n   = − . 

Thus, the shooting angle condition is 
target

shootn b  , where shootb  is the shooting angle threshold, meaning that the 

robot, the ball, and the goal are approximately aligned along a straight line. When both the shooting distance condition 
and the shooting angle condition are satisfied, the robot will perform the shooting action. 

 
B.   Gait Planning and Error Compensation for Nao Robots 
When performing gait planning for the Nao robot, after determining the position of the ball, the robot should be able 

to walk to a position close to the ball. Typically, we use the ( , , )MoveTo x y theta  function, setting the X and Y 

coordinates, as well as the robot's angle around the Z-axis, to make the robot start walking. However, experiments have 
shown that with this walking function, the robot's gait is unstable, and when walking a long distance, there can be 
significant deviation from the target position. To address this issue, we control the gait parameters of the Nao robot to 

reduce errors during walking. We use the setFootSteps  function to customize the robot's gait parameters, adjusting 

the step distance to stabilize the robot's walk. The function's input parameters are [ , , ]x y  , which represent the distance 

in the X and Y directions between the left and right foot after a step, as well as the rotational angle around the Z-axis. 

Experiments showed that setting the gait parameters to [0.15,0.1,0]  results in a step length of approximately 0.1m  

per step. When the step distance is greater than $0.1m$, the robot uses the setFootSteps  function to walk; when the 

step distance is less than $0.1m$, the robot uses the MoveTo  function. The error compensation strategy ensures that 

the Nao robot can move towards the target position with minimal error. 
 
C.   Communication Architecture and Team Collaboration 
To facilitate efficient decision-making and enhance team collaboration among robot players, we employ a 

Client-Server (C-S) architecture as shown in Fig.2 in our robot soccer match system. This design enables seamless 
communication between individual robots (clients) and a centralized server. Each robot observes the environment 
to extract its state, which is then transmitted to the server. 
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Fig. 2.   C-S architecture. 
 
On the server side, RL algorithms are executed to process the received state data. The server evaluates the state 

and reward sent back by robot players, generates optimal decisions for each robot, and transmits these decisions 
back to the respective robots. The robots subsequently execute the actions, completing their tasks in the soccer 
match. 

This architecture strengthens communication between robots by leveraging the server as a centralized decision-
making hub, enabling improved coordination among teammates. The C-S architecture ensures that robots operate 
cohesively, optimizing overall team performance in the dynamic soccer environment. 

 
D.  Robot Soccer Match Control Logic 
The core goal of the match control logic in this study is to intelligently manage and control the robot football match, 

including match time, score, player states, ball control, robot recovery, and field boundary detection. We implement 
match management by inheriting the Supervisor class in Webots, which includes functions for robot movement, score 
determination, and collision detection. Before the match begins, a series of initialization operations are carried out, 
including setting the initial score, initializing robot positions, and resetting the ball's initial position. The positions of 
the robots and the ball are stored in global variables, which are updated during the match. The current position of the 
ball and its distance to the goal area are used to determine whether a goal is scored. If the ball is within the goal area 
and sufficiently close to the goal, a scoring event is triggered. Each time a goal is scored, the score is updated 

depending on which team scored, and the ballinitial method is called to reset the ball to the center of the field for 

the next round. 
 
During the match, the robots' states are monitored in real time, including whether the robot has fallen or needs to 

stand up. The robot's Z-axis height is used to determine if it has fallen. If the robot falls (i.e., the Z-axis is below a set 
threshold), a "get up" operation is triggered. This operation is implemented through the getup  method, which 

repositions the robot to a standing position. If the robot has fallen and the set recovery time (defined by 

_ _stand up cost ) has passed, the robot will automatically perform the getup  operation and return to a standing 

state. This process includes adjusting the robot's position and posture to ensure it can resume movement during the 

match. After each ball control, the _check belong  method is used to determine which team controls the ball, 

ensuring that both teams do not have control of the ball simultaneously. Additionally, if a robot goes out of bounds, it 
will be reset to a predetermined position. To ensure the fairness of the match, the robot's movement range must be 
monitored, and the ball must remain within the field's boundaries. If the ball or robot goes out of bounds, the 

_ _ _check out of bounds  and _ _ _check out of pitch  methods are triggered, and the system will 

automatically adjust the positions of the robot and the ball to keep them within the designated area. Throughout the 
match, the system periodically updates the match information, including the current score and which team has control. 

After the match ends, the system will display a message on the screen using the setLabel  method, indicating that 

the match is over. The match ends when the pre-set time limit (e.g., 10 minutes) is reached. When the match time 

expires, . ( )robot step timestep  enters the exit state, indicating that the match is over. To ensure coordination and 
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information synchronization among multiple robots, the system uses the Emitter class for data transmission. Whenever 

location or state information needs to be transmitted, the sendmessage  method sends the position data of all robots 

and the ball to the server using the Emitter class, ensuring that all robots and the match state remain synchronized 
during the match. As shown in Figure 3, the match logic control flow is illustrated. 

 

 
Fig. 3.   Long-term average reward as a function of timeslots 

 
E.  Problem Formulation 

Aiming at optimizing the actions taken by the NAO robots, this study addresses the problem of optimizing the robot's 
decision-making strategy for a football match. Intuitively, the decision-making on action scheduling turns out to be an 
MDP with one objective, where the immediate reward can be therefore formulated as 

( )goal close controllogt t t tr r r r= − + + , where 
goal

tr , 
close

tr  and 
control

tr  represent the goal reward, the proximity to the ball 

reward, and the ball control reward, respectively. Applying a logarithm to the reward helps smooth out large variations 
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in reward values, preventing overly large rewards from dominating the learning process. It ensures more balanced 
learning by compressing extreme values, promoting stability and improving the efficiency of decision-making, especially 

in multi-objective tasks. For such an MDP, the state in timeslot t  can be formulated as 
oppo

goal[ , , , ]t cs P p if P= S , 

where 1 2 3 4[ , , , ]P p p p p= , 
oppo oppo oppo oppo oppo

1 2 3 4[ , , , ]P p p p p=  and S  represent the positions of the robots on the 

same team and the opposing team and state space, respectively. The action scheduling action performed by robot n  can 

be obtained as ,n t na A , where 
nA  is the action space w.r.t. robot $n$. The actions robot n  can take in a timeslot 

include moving forward, turning left, turning right, shooting, and staying. By defining 

4

1

n

n=

=A A , the action 

scheduling policy can be expressed as : →S A . 

In order to maximize the long-term average reward, an objective featuring discounted cost can be written as 

0

t

t

t

R r


=

 
=  

 
E , where   represents the discount factor. Hence, the optimization of   can be formulated as   

*argmax R =
.                                                                                                   (1)    

 
III.  NAO ROBOT DECISION-MAKING OPTIMIZATION ALGORITHM 

 
A.  Action Scheduling with DQN 
In multi-robot systems, particularly in task execution within dynamic environments, traditional rule-based or model-

based approaches may not cope with the complexity and uncertainty of the environment. Therefore, it is crucial to use 
reinforcement learning methods to optimize the robots' decision-making. Deep Q-Network (DQN) is an algorithm that 
combines deep learning with Q-learning, using deep neural networks to approximate the Q-function and overcoming the 
limitations of traditional Q-learning when the state and action spaces are too large. In this paper, we employ DQN to train 
the robot agents, enabling them to optimize decision-making through experience learning in complex environments. 

 
DQN uses a multilayer perceptron (MLP) architecture, where the input is the current state and the output is the Q-

value for each possible action. The function __ __init  initializes 5 fully connected layers, each created using 

.nn Liner , which represents a linear transformation between the neurons in each layer. After each hidden layer, the 

ReLU activation function .torch relu  is applied. Finally, the output layer 5fc does not use an activation function. The 

result of the output is the Q-value for each action, which represents the expected return for each action taken in the current 
state. 

 
During training, DQN uses Experience Replay and Target Network mechanisms to improve the stability of training. 

To avoid instability in the model due to the correlation between consecutive state-action pairs ( , )s a , DQN introduces 

the experience replay mechanism. The experience replay pool stores the experience data collected from the agent's 
interaction with the environment (state, action, reward, next state, and whether the episode is done). During training, 
small batches of data are randomly sampled from the experience replay pool, breaking the correlation between the data 
and improving the efficiency and stability of training. DQN also introduces the target network to calculate the target Q-
value, which ensures the stability of Q-value updates. 

 

We set the parameters of the target network as n
−

. Parameter n
−

 is updated to the current parameters of the Q 

network n , after a fixed number of steps. This helps to reduce the fluctuation of the target during training and improves 

the stability of Q-value estimation. The goal of DQN is to minimize the mean squared error (MSE) between the Q-value 

output by the Q network and the target Q-value. Let the current state be ts , the action taken be ,n ta , the reward be tr , 

the next state be 1ts +  and the done flag be $done$.The target Q-value is 
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,

target 1 ,max ( , ; ) (1 )
n t

t t n t n
a

Q r Q s a done += +   − ,                                     (2) 

where   is the discount factor, which represents the degree of influence of future rewards. So the loss function is 

                                       
, 1

,

2

, , , network , 1 ,( ) [( ( , ; ) ( max ( , ; ))) ]
t n t t t

n t

n s a r s t n t n t t n t n
a

Q s a r Q s a   
+

−
+= − + EL .                                  

(3) 

We update the Q network parameters 
n  by calculating the gradient of the loss function 

                                                          ( )
nn n n    −  L ,                                             (4) 

where   is learning rate. The pseudocode of the proposed DQN algorithm is summarized in Algorithm 1. 

 

Algorithm 1 Action Scheduling with DQN 

1: Initialize: 1t = ; the learning rates  ; initial state s ; neural network parameters n ; experience 

replay buffer memory ; 

2: repeat 

3: Robots observe the state ts  and transmit ts  to the server; 

4: Server uses epsilon-greedy strategy to select actions for each robot; 
5: For each robot 
6: repeat 

7: Robot n  executes the action ,n ta , yield rewards tr , and observe the new state 1ts +  and 𝑑𝑜𝑛𝑒 flag; 

8: Store the ts , ,n ta , tr , 1ts +  and 𝑑𝑜𝑛𝑒 in the memory ; 

9: The robot action scheduling agents perform

,

target 1 ,max ( , ; ) (1 )
n t

t t n t n
a

Q r Q s a done += +   − ; 

10: Robot n  computes the loss function 

, 1
,

2

, , , network , 1 ,( ) [( ( , ; ) ( max ( , ; ))) ]
t n t t t

n t

n s a r s t n t n t t n t n
a

Q s a r Q s a   
+

−
+= − + L E ; 

11: Update Q-network parameters 
n  using gradient descent ( )

nn n n    −  L ; 

12:     until All the robots has updated the Q-network parameters 

13： 1t t + ; 

14： until Stopping criteria 

 
B.   Action Scheduling Optimization with PPO based on AC 
Although DQN performs exceptionally well in tasks with discrete action spaces, it has limitations in terms of stability 

in continuous action spaces and policy optimization. In comparison, the PPO algorithm introduces a "clipping" 
mechanism to effectively control policy updates, preventing excessively large parameter updates. This results in higher 
stability and adaptability, particularly in dynamic tasks such as robot soccer games. This paper proposes a robot decision-
making optimization algorithm based on the AC (Actor-Critic) architecture, and improves the original AC framework by 
incorporating the PPO algorithm. 

 
First, PPO uses the data collected from the environment, such as states, actions, and rewards, to calculate the discounted 

rewards at each time step 

                                           
2

1 2

0

k

t t t t t k

k

R r r r r  


+ + +
=

= + + += .                                            (5) 

Specifically, the algorithm reverses the reward sequence and then uses the discount factor $\gamma$ to iteratively 
compute the return at each time step, so that the reward at each step takes into account future rewards. Next, PPO 
normalizes the discounted rewards 
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norm t
t

R
R



−

= ,                                                              (6) 

 
where   and   represent the mean and standard deviation of all the discounted rewards, respectively. Normalization 

is performed to ensure that the variance of the rewards does not become too large, preventing numerical instability during 
training. 

As the next step, PPO observes the state value ( )tV s  from the critic network, which represents the expected return 

when following the current policy from state ts . The output of the critic network is an estimate of the state value. The 

advantage function can be formulated as 
norm ( )t t tA R V s= − ,                                                          (7) 

 
which means how good the current action is relative to the state value estimated by the critic network. The larger the 
advantage function, the better the current action is compared to other actions. When updating the policy, PPO computes 
the probability ratio between the new and old policies 

,

,

,

( | )
( ) exp(log log )

( | )
old

n t t

t t t old

n t t

a s
r prob prob

a s









= = − ,                        (8) 

where 
old ,   represent old and current policy, and log tprob  and ,log t oldprob  represent the logarithmic 

probabilities of action ,n ta  under the current and old policies, respectively. 

To ensure that the policy updates do not deviate too far and to prevent large updates from causing instability in training, 
PPO uses a surrogate loss function 

 

       𝐿𝐶𝑙𝑖𝑝(𝜃) = 𝐸𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), (1−∈ ,1+∈)𝐴𝑡]                                      (9) 

 
where 𝐶𝑙𝑖𝑝(𝑟𝑡(𝜃),1−∈ ,1+∈) constraines the probability ratio within the interval [1−∈ ,1+∈) ]. This means that when 

the probability ratio exceeds this range, PPO will use the clipped ratio to compute the loss. The clipped surrogate loss 

restricts the update magnitude between 1−∈  𝑎𝑛𝑑 1+∈, thereby preventing excessively large policy updates. ò  is the 

clipping parameter, which is typically set to 0.20. To further optimize the policy, PPO's loss function also includes a 
value loss, which is calculated by minimizing the mean squared error between the state values estimated by the critic 
network and the actual discounted rewards 

norm 2( ) [( ( )) ]V

t t tL R V s = −E .                                             (10) 

 
In addition, to encourage exploration of the policy, PPO also includes an entropy loss, which can be written as 
 

,

, ,( ) ( | ) log ( | )
n t

n t t n t t

a

H a s a s    = − .                                       (11) 

This entropy loss term encourages the policy network's distribution to maintain a certain level of randomness, preventing 
the policy from becoming overly deterministic, thereby reducing the risk of premature convergence. Therefore, PPO loss 
function can be formulated as 

CLIP

1 2( ) ( ) ( ) ( )VL L c L c H    = + − ,                                           (12) 

where 1c  and 2c  are the hyperparameters for the weights of the value loss and entropy loss, respectively. Through this 

loss function, PPO can balance the policy update, the accuracy of the value function, and the exploration of the policy. 
During training, gradients are calculated through backpropagation to minimize this loss function, and the parameters of 
the policy network and critic network are updated using the Adam optimizer. The pseudocode of the proposed PPO 
algorithm is summarized in Algorithm 2. 
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Algorithm 2 Action Scheduling Optimization with PPO based on AC 

1： Initialize: 1t = ; the learning rates _lr actor , _lr critic ; initial state s ; neural network 

parameters nw , 
n ; clipping parameter ∈𝑐𝑙𝑖𝑝 

2： repeat 

3： repeat 

4： For each robot; 

5： Robot n  observe the state ts ; 

6： For robot n , the action scheduling agents sample , ~ ( | ; )n t n t na s  ; 

7： In timeslot t , robots execute the actions ,n ta ; 

8： The robots yield rewards tr  and observe the new state 1ts +  and ( )tV s ; 

9： The action scheduling agents perform 

 𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸 𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)𝐴𝑡)] to calculate surrogate loss; 

10： The action scheduling agents calculate mean squared error between the state values estimated 

by the critic network and the actual discounted rewards 
norm 2( ) [( ( )) ]V

n t t tL R V s = −E ; 

11： The action scheduling agents calculate entropy loss 

,

, ,( ) ( | ) log ( | )
n n n

n t

n t t n t t

a

H a s a s    = − ; 

12： The action scheduling agents calculate loss function 
CLIP

1 2( ) ( ) ( ) ( )
n

V

n n nL L c L c H    = + − ; 

13： Robot n  calculates gradients through backpropagation to minimize this loss function; 

14： Updated the parameters of the policy network and critic network; 

15： until All the robots has updated the parameters 

16： 1t t + ; 

17： until Stopping criteria 

 
IV.SIMULATION RESULTS 

 
In the simulations, each team has 4 NAO robots, the size of the football field is 6×4.5, and the goal size is 2.6×1. The 

learning rate for the DQN network is 1 3e = − , and the exploration rate ∈= 0.3. In the PPO algorithm, the clipping 

parameter is ∈𝑐𝑙𝑖𝑝= 0.2, discount factor 0.99 = . The learning rate of policy network is _ 3 4lr actor e= − , and 

the value network is _ 1 3lr critic e= − . We conducted simulations in Webots R2023b. 

 
In the simulations, we implemented DQN and PPO methods, to optimize the decision-making process of robot players. 

The performance of both methods was evaluated in a simulated robot soccer environment. Fig. 4 illustrates the long-term 
average reward. The plot shows that both the average rewards achieved by two RL methods gradually grow and finally 
saturate as the number of timeslots increases. This observation confirms confirms that PPO converges to the optimal 
strategy faster than DQN, and PPO achieves a higher final long-term average reward value, indicating that PPO has 
higher training efficiency, better decision-making ability and more effective environmental learning. The faster 
convergence speed of PPO can be attributed to its policy gradient based architecture, which allows for smoother updates 
and more stable training in continuous and dynamic environments. In contrast, although DQN is effective in discrete 
action spaces, its convergence speed is slower and performance is lower in complex football environments. The 
comparison highlights the applicability of PPO in highly dynamic multi-agent scenarios such as robot soccer, where rapid 
adaptation and precise tasks are required. 
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Fig. 4.   Long-term average reward as a function of timeslots. 
 

Fig. 5 and Fig. 6 respectively represent the long-term average rewards of four robots in the same team with DQN and 
PPO. Like Fig. 4, these two figures also show that PPO has a faster convergence speed and can converge to higher values 
compared to DQN. These two plots also illustrate that Robot R3 can converge to the highest value, Robots R2 and R1 
converge to similar values, and Robot R4 converges to the lowest value. The different convergence values of the four 
robots confirm the optimization of the cooperation of robot players. Due to Robot 1 being the main offensive player with 
long-term ball control and shooting, it is able to converge to the highest value; Robots 2 and 3, as offensive players who 
spend most of their time in the frontcourt, tend to converge to slightly lower values; Robot 4 plays a defensive role in the 
backcourt for a long time, with less time for ball control and approach, so it will converge to the lowest value. 

 

 
 

Fig. 5.   Long-term average reward for each robot with DQN 
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Fig. 6.   Long-term average reward for each robot with PPO 
 

We conducted 50 games between two teams optimized with DQN, and then conducted 50 matches between two teams 
optimized with PPO, with each game lasting 10 minutes. Table 1 shows the statistics of simulation test results. Table 1 
demonstrates that using PPO to optimize robot decision-making can achieve better goal performance and more stable 
ball control compared to DQN. And more passes can also indicate that using the PPO algorithm can promote cooperation 
between robots. 

 
TABLE I 

MATCHES STATISTICS 
 

 Average goals Ball control rate Average number of passes 

PPO 4.32 82.9% 47.26 
DQN 2.96 74.3% 22.34 
 

Therefore, from the simulation results, whether from the perspective of long-term average reward convergence speed 
and reward value, or from the optimization of player offensive performance and team collaboration in actual matches, 
PPO algorithm can not only achieve decision-making for robots in highly dynamic environments, but also achieve better 
optimization results compared to DQN. 

 
V. CONCLUSIONS 

 
This paper has proposed decision-making methods based on DQN and PPO to address the complex decision-making 

problem of NAO robot players action scheduling. Simulation results shows that the proposed algorithms converge. 
Moreover, in the presence of a highly dynamic environment, the comparison between the proposed algorithms illustrates 
that the applying PPO in policy optimization is beneficial to dynamic scheduling in the robot soccer matches. PPO method 
has faster convergence speed and can converge to a higher value compared with DQN method,, which means that PPO 
method has better performance in optimizing robot player action decision-making. 
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