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ABSTRACT: This paper presents an RNN-based model for forecasting maximum frequency deviation in power 
systems with high PV penetration. The model captures nonlinear features in PV output and time-variable frequency 
data during contingencies. A probability power flow-dynamic tool (PPDT) is developed to model uncertain power 
systems, considering all possible PV generation patterns, validated through case studies of the South Korean power 
system. 
NOMENCLATURE  
 

I.INTRODUCTION 

 

A.MOTIVATION 

Recent shifts toward sustainable energy and legal mandates in South Korea for 50 GW of renewable energy by 2030 
have led to a decline in synchronous power generation, causing significant frequency stability issues in power grids. 
Notable incidents like the 2016 South Australian blackout and the 2019 UK power failures underscore the need for 
improved frequency control, with countries like Australia setting strict RoCoF limits. Effective frequency response 
forecasting is critical for integrating renewable energy into power systems, ensuring stability during contingency 
events. 
 

B. LITERATURE REVIEW 

Sophisticated solar photovoltaic (PV) prediction models fall into three categories: physical, statistical, and artificial 

intelligence. AI techniques, particularly neural networks, excel in forecasting due to their ability to handle nonlinear 

problems and uncertainties. Various models like ANN, BPNN, RNN, LSTM, and GRU have been used for PV power 

prediction. An automatic probability power flow-dynamic tool (PPDT) is developed to enhance RNN-based prediction 

models by considering all possible PV power generation scenarios and ensuring accurate frequency deviation 

calculations. 

 

                                                   
                      

FIGURE 1. Proposed frequency forecasting RNN model structure in the power system. 
 

C. CONTRIBUTION 

This paper addresses voltage changes from regional PV power generation affecting frequency response during faults, 
necessitating the development of a Python-based PPDT linked to a PSS RE server for simulating power flow dynamics. 
It introduces a novel RNN-based model for predicting maximum frequency deviations, tailored to extract high-level 
features from PV power output and frequency data. The model's performance is validated with 2030 South Korean PV 
power capacity data, demonstrating its accuracy and improved decision-making certainty. Detailed analysis and 
discussions are provided in subsequent sections. 
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II. PROBABILITY POWER FLOW DYNAMIC TOOL FOR DATASET CONFIGURATION 

 

A.Overview of the Probability Power Flow Dynamic Tool (PPDT) 

The Probability Power Flow Dynamic Tool (PPDT) aims to predict the maximum frequency deviation and response 

during contingency events, minimizing the error between simulated and predicted frequencies. Frequency deviations 

are influenced by generator trips, load changes, system inertia, and load damping, which are affected by voltage 

changes from probabilistic PV power generation. 

 

Conducting load flow and dynamic simulations for all possible uncertainty combinations is time-consuming and 

inefficient. To address this, the PPDT was developed using Python scripts linked to a PSS RE server. This tool 

efficiently handles various PV power generation scenarios without modifying power flow and dynamic equations and 

features a user-friendly interface using the Python Tkinter library. 

 

 
                                  

FIGURE 2. Structure and first page of Probability Power Flow Dynamic Tool. 
 

The PPDT process involves inputting historical data to generate hourly PV and load data using probabilistic density 

functions (PDFs) and normal distributions. A regional correlation matrix manages correlations between PV generation 

uncertainties, reducing the input dataset size. Random variables are generated for each area, followed by economic 

dispatch considering network congestion. Power flow is calculated using the Newton-Raphson method, checking for 

convergence and saving results. Finally, dynamic simulations use the saved data to predict frequency responses during 

predefined contingency events. 

 

By generating and analyzing a manageable number of scenarios, the PPDT provides precise modeling of uncertain 

power systems, helping system operators prepare for all possible PV power generation scenarios and ensuring system 

reliability. 

 

B. CALCULATION OF REGIONAL CORRELATION MATRIX 
To calculate the regional correlation matrix, wind power is treated as constant, and load modeling uses a normal 

distribution. The PDF of a normal distribution is used to convert historical daily irradiance curves into active power 

using a linear equation involving irradiance, temperature, and humidity. PV power probability density is estimated with 

a nonparametric kernel density function to capture stochastic characteristics. The regional correlation matrix 

coefficients are derived from the maximum values of these probability density curves. This method avoids the 

discontinuities of histograms, using continuous probability models instead. The matrix coefficients are used to calculate 

regional PV output power, limiting random range through the correlation index and kernel function. This process 

generates scenarios for power flow and dynamic simulations, informing a recurrent neural network (RNN) model to 

capture daily regularity and randomness in regional PV power supply. 
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FIGURE3. Example of regional correlation matrix coefficient calculation. 

 

III. PROPOSEDRECURRENTNEURALNETWORKMODEL 

 

A. RNNMODEL 

An RNN model is configured using PV power and frequency data, relying on current observations and previous hidden 
states. It utilizes ReLU activation functions to prevent gradient issues. Training involves backpropagation through time 
(BPTT) to adjust parameters like U, V, W, b, and c. The cost function L calculates errors across time sequences, 
updating gradients systematically for parameter optimization. This iterative learning process adjusts weights based on 
PV power and frequency data inputs. 
 

 
                                                      

FIGURE4. Recurrent neural network (RNN) structure. 
 

B. DATASETCONFIGURATION 
Time-series data for RNN models in power systems often struggle due to inconsistent correlations between voltage and 

frequency responses over time. Voltage variations depend heavily on local generators and compensators rather than 

frequency data, reducing model accuracy. To improve forecasting, time-domain frequency and PV power generation 

data are used, with potential for future inclusion of additional power system variables. 

Ordered data in power system modeling focuses on inertial changes and economic dispatch strategies affecting 

generators. By adjusting inertia through PV power, datasets enhance forecasting accuracy. This approach utilizes seven 

input datasets to predict maximum frequency deviation and response, generating extensive simulations for validation 

and refinement of RNN models. 

                                   

TABLE1. Input data for RNN. 
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FIGURE 5. Structure of recurrent neural network (RNN). 
 

C. FREQUENCY FORECASTING MODEL 

A proposed RNN-based predictor models complex frequency deviations influenced by factors like PV power and 
economic dispatch results. It uses multiple input steps and short-term memory to enhance accuracy in predicting 
maximum frequency deviations. The model includes four hidden layers, optimized through experiments to balance 
performance and generalization ability. Unlike LSTM, it focuses on short-term relationships, crucial for transient 
frequency responses up to 10 seconds. Experimental results show its effectiveness in predicting frequency changes 
based on regional PV output patterns, outperforming traditional models. 
 

 
                             

FIGURE 6. Flowchart for RNN-based frequency forecasting model using PPDT. 
 

IV. SIMULATION RESULT 

 

The study analyzes nonlinear, unpredictable output responses from PV power generators, impacting power systems and 
quality. It uses KEPCO data to model future PV capacities and correlations across regions. 
 

TABLE 2. Maximum PV power at 2:00 p.m. 
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FIGURE 7. Probability density function of regional  PV output power with the same rated PV system 

 

 
 

FIGURE 8. Map of South Korea and contingency scenario. 
 

 
                                         

FIGURE 9. Training data of all probable patterns of PV output power. 
 

The study involves 1000 dynamic simulations where the two largest generator units are tripped. PV power patterns 
from five regions train an RNN network for frequency forecasting. Testing on 200 cases shows the proposed method's 
accuracy, outperforming four benchmark models. Linear regression exhibits robust performance, with data points 
closely aligned along the line, indicating high accuracy. The Korean power system's ample reserve and linear frequency 
response enhance the method's reliability. 
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FIGURE 10. Results of linear regression for predicted and measured frequency in 200 cases. 
 

 
 

FIGURE 11. Data 10 s ahead of frequency forecasting results and linear regression: (a) Case 1: 879, 2116, 687, 2759, 
and 440 MW; (b) Case 2: 849, 473, 557, 2107, and 471 MW; and (c) Case 3: 107, 3405, 960, 4334, and 708 MW. 

A proposed RNN-based model for frequency forecasting outperforms benchmarks with lower MAPE and RMSE, 

validated across various cases. Despite R2 values declining with longer forecasting horizons, the model remains robust 

with a transient response time of up to 10 seconds. By integrating adjacent PV power and frequency time-series data, 

the model effectively captures short-term patterns, enhancing forecasting accuracy. 

 

TABLE 3. Performance evaluation of frequency response. 
 

                                   
 

V. CONCLUSION 

 
A probabilistic power system analysis incorporating uncertain PV power generation is crucial due to the growing 
volume of renewable energy. This paper proposes an RNN-based model for forecasting maximum frequency deviation 
in power systems with high PV penetration, using regional PV output and time-variable frequency data. 



      | DOI: 10.15680/IJIRCCE.2024.1207057 | 

IJIRCCE©2024                                                      |     An ISO 9001:2008 Certified Journal   |                                                    9704 

 
FIGURE 12. Proposed RNN-model-based economic            FIGURE 13. Example of 1-min central dispatch algorithm. 
                      dispatch algorithm. 
 

VI. DISCUSSION 

 
In this study, a new RNN model addresses previous approximations in PV power generation forecasting methods, 
ensuring comprehensive consideration of all possible data combinations. It integrates into existing system planning and 
operational techniques, enhancing dispatch algorithms by simulating frequency responses efficiently. This approach 
supports real-time microgrid operations by predicting PV power generation and consumption accurately, improving 
central dispatch precision while reducing computational time. 
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