

ISSN(O): 2320-9801

ISSN(P): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Impact Factor: 8.771 Volume 13, Issue 4, April 2025

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| Impact Factor: 8.771| ESTD Year: 2013|

International Journal of Innovative Research in Computer and Communication Engineering (IJIRCCE)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Security Based Biometric Voting Machine using Xilinx Tool

Mr. Naga Raju

Assistant Professor, Department of ECE, Sri Vasavi Institute of Engineering & Technology (Autonomous),

Nandamuru, Pedana, A.P, India¹

K.S.S. Priyanka²,L. Daya Mani³, M. Mounika⁴, T. Tarun⁵

Department of ECE, Sri Vasavi Institute of Engineering & Technology (Autonomous), Nandamuru, Pedana, A.P, India²⁻⁵

ABSTRACT: This paper presents "FINGERPRINT BASED ELECTRONIC VOTING MACHINE IN VERILOG", based the ballot paper, through processyotingwaslongandtherehadchanceofmisusingtheballotpaperbygivingvotebetween two parties present on the overcome ballet paper come the issue raised the resolvedbybringinginthesystemcalledElectronicvotingmachine(EVM)iseasytounderstand any anybody and secure method that takes minimum our time. electronic machine, anunauthorized person can cast this vote in electronic voting through this tampering of an EVM was happened by this voting system becoming less safe and secure. In this project we are overcoming the problem of less safe and secure by introducing fingerprint based electronic voting machine in Verilog that is designing on Xilinx ISE using Verilog and for the real time application we are proposing on FPGA (Field Programmable gate array). fingerprint acts as providesafetyand securityorpasswordto casttheirvoteswhich securitytovotingsystem. willbeunauthorizedpersoncannotcome and accessthisvote. Before, apersonusedtocasttheir more than once but now only

KEYWORDS:BiometricVoting,ElectronicVotingMachine(EVM),FPGA(FieldProgrammableGateArray),SecureVoting,Tamper-proofVoting, VLSIDesign,Voter Verification, Xilinx ISE.

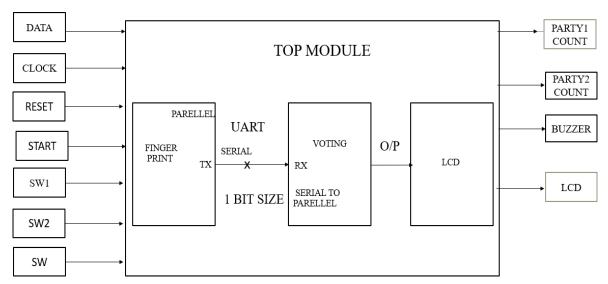
I. INTRODUCTION

The integrity of voting systems has become a subject of increasing concern, particularly in light of growing populations and the complexity of managing democratic processes in a secure and transparent manner. As the world moves toward more digitally enabled systems, traditional voting mechanisms face challenges such as impersonation, multiple voting, vote tampering, and delays in result processing. To overcome these issues, there is a pressing need for a secure, efficient, and technologically advanced alternative that ensures voter authenticity and reliability of results. One of the most promising approaches to address these concerns is the development of a biometric-based electronic voting machine, specifically utilizing fingerprint recognition technology. Fingerprints are unique to every individual and provide a reliable method of verifying a voter's identity, making them ideal for use in secure voting systems. Casting a ballot is the sole criteria for picking their agents by individuals in any vote-based system, along these lines, this whole procedure ought to be finished with most extreme consideration sojustareasonableand meritinghopefulischosenthatisexclusivelyfoundedonpopularconclusion. In prior days, decisions were led utilizing poll paper framework where by individuals threw their votes to their most liked challenger by setting stamp against his/her namehoweverthisstrategyregularlyexperienceddifferentdefectsforexample,takingofvotesandunjustifiableoutcomes.Beth atasitmay theplanofstraightforwardelectroniccastingaballotmachinewithremovablememorycard was scarce as access to memory card for even an instant will alter all of the votes with same malignant code. So, we tend to need a frame work that might offer better technique for executing Electronic Voting Machine. Since we tend to understand that it is laborious to manage control signals, hence we have structured electronic casting a ballot machine in Verilog utilizing Xilinx ISE 14.7 which can be actualized on FPGA.

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| Impact Factor: 8.771| ESTD Year: 2013|

International Journal of Innovative Research in Computer and Communication Engineering (IJIRCCE)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)


II.PROPOSEDSYSTEM

A novel fingerprint-based electronic voting machine that integrates biometric authentication with FPGA (Field Programmable Gate Array) technology using the Xilinx tool suite. The system is designed to authenticate users based on their fingerprint data before allowing them to cast their vote. Once authenticated, the voter is given the opportunity to vote for their chosen candidate or party. The vote is then recorded and counted in a secure manner, with the result displayed in real-time. By utilizing FPGAs, the system benefits from the inherent advantages of hardware-level speed, parallelism, and reconfigurability, which are essential for real-time operations and secure logic implementations.

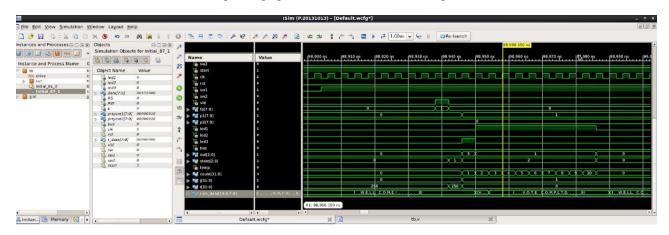
The proposed system is implemented as a modular design on an FPGA platform. The core components include a fingerprint recognition module, a UART communication interface, a voting logic unit, and an output display mechanism. The fingerprint module captures the biometric data of the voter and converts it into a digital format. This data is then serialized using a UART (Universal Asynchronous Receiver/Transmitter) interface and transmitted to the central voting logic unit. The UART communication plays a crucial role in converting the parallel data obtained from the fingerprint sensor into a serial bitstream for transmission, minimizing the number of communication lines and enhancing system simplicity. The data is transmitted in 1-bit size units to maintain efficient bandwidth usage and ensure minimal hardware overhead.

Upon receiving the fingerprint data, the voting logic unit converts the serial input back to parallel using a serial-to-parallel converter. It then compares the fingerprint with the stored database of authorized voters. If the fingerprint matches a registered voter who has not yet cast a vote, the system allows the voting process to proceed. The voter is then prompted to cast their vote using designated input switches corresponding to different parties. For instance, SW1 and SW2 can be used to cast a vote for Party 1 and Party 2, respectively. Once a vote is cast, the system locks the voter's ID, preventing them from voting again, thereby ensuring the principle of one-person-one-vote is upheld.

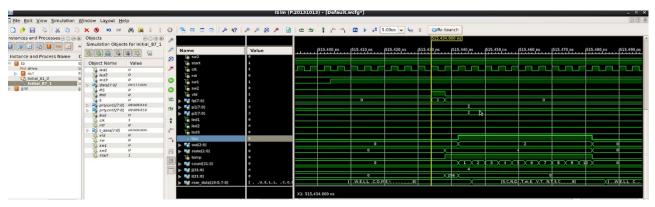
The vote counts are stored and updated in real-time within internal registers or counters. These values are displayed through output ports, allowing for a real-time view of the election status. The system also features a buzzer to provide audible feedback in case of invalid input or repeated voting attempts. Furthermore, an LCD display module is used to provide a visual confirmation of the voting process, LCD (Liquid Crystal Display) screen is an electronic display module and find a wide range of applications. A 16×2 LCD display is very basic module and is very commonly used in various devicesandcircuits. These modules are preferred overseven segments and other multisegment LEDs. The reasons being: LCDs are economical; easily programmable; have no limitation of displaying special & even custom characters (unlike inseven segments), animation sandsoon. A 16×2 LCD means it can display 16 characters per line and the reare 2 such lines. I nthis LCD each characteris displayed in 5×7 pixel matrix. This LCD has two registers, namely, Command and Data.

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| Impact Factor: 8.771| ESTD Year: 2013|

International Journal of Innovative Research in Computer and Communication Engineering (IJIRCCE)


(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

The use of an FPGA ensures that the entire logic, including fingerprint verification, vote casting, and result tallying, can be handled efficiently at the hardware level, significantly reducing the latency compared to software-based systems. The Xilinx toolchain, including simulation, synthesis, and implementation tools, facilitates the development andverification of the system design. Using VHDL or Verilog, the modules are described behaviourally and structurally, tested in simulation environments, and then deployed onto a target FPGA board for real-time operation.


This fingerprint-based voting machine provides a reliable, secure, and user-friendly approach to modern electronic voting. It ensures that each vote is authenticated, counted accurately, and prevents any form of electoral malpractice. By integrating biometric authentication with robust digital logic design, the system enhances trust and transparency in the electoral process. Such an approach is not only scalable and adaptable to various voting scenarios—from institutional elections to governmental polling—but also sets the groundwork for future advancements in secure electronic voting systems.

III. EXPERIMENTAL RESULTS

Fig.1 Fingerprint Verification, Vote Casting

FFig2: Buzzer alert due to failed authentication

IV. CONCLUSION

TheFingerprint-BasedElectronicVotingMachineusingVerilogonFPGArepresents a significant step toward secure, efficient, and tamper-proof voting systems. It addresses the core challenges of traditional voting methods impersonation, vote duplication, and delayed results. The project showcases how biometric security and FPGA-based design can be effectively combined to improve democratic processes. With future enhancements, this system holds the potential to revolutionize voting at all levels.

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| Impact Factor: 8.771| ESTD Year: 2013|

International Journal of Innovative Research in Computer and Communication Engineering (IJIRCCE)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

REFERENCES

- [1] GotlamitlaSaikiranReddy,KotekantiTauseefTaufiq,SRadha,KDharmasimhareddy,P Nagabhushanam, K pavankalyan Reddy. Security Based Electronic Voting Machine. (2022) 2nd International Conference on Power Electronics & IoT Applications in Renewable EnergyanditsControl(PARC)|97IJETAETSISSN:0974-3588|JULY"12-DECEMBER
- [2] Gurucharan, K., Kiranmai, B., Kiran, S. S., & Kumar, M. R. XilinxBased Electronic Voting Machine. International Journal of Engineeringand Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-9Issue-1, October 2019
- [3] Zhang, S., Wang, L., & Xiong, H. (2020). Chaintegrity: blockchain-enabled large-scale e-voting system with robustness and universalverifiability. International Journal of Information Security, 19(3), 323-341.
- [4] Zhang, S., Wang, L., & Xiong, H. (2020). Chaintegrity: blockchain-enabled large-scale e-voting system with robustness and universalverifiability. International Journal of Information Security, 19(3), 323-341.
- [5] Vemula, S., Kovvur, R. M. R., &Marneni, D. (2021). Secure E-VotingSystem Implementation Using CryptDB.SN Computer Science, 2(3), 1-6.
- [6] Lin, X. (2020). College student employment data platform based on FPGA and machine learning. Microprocessors and Microsystems, 103471.
- [7] Saqib, M. N., Kiani, J., Shahzad, B., Anjum, A., & Ahmad, N. (2019). Anonymous and formally verified dual signature based online e-voting protocol. Cluster Computing, 22(1), 1703-1716.
- [8] Baudier, P., Kondrateva, G., Ammi, C., &Seulliet, E. (2021). Peaceengineering: The contribution of blockchain systems to the e-votingprocess. Technological Forecasting and Social Change, 162, 120397.
- [9] Kumar, S., & Walia, E. (2011). Analysis of electronic voting system invarious countries. International Journal on Computer Science and Engineering, 3(5), 1825-1830.
- [10] Keller, A. M., Mertz, D., Hall, J. L., &Urken, A. (2006). Privacy issuesinanelectronicvotingmachine.In PrivacyandTechnologiesofIdentity (pp. 313-334). Springer, Boston, MA.
- [11] Prasad, R. M., Bojja, P., &Nakirekanti, M. (2016). Aadhar basedelectronic voting machine using arduino.International Journal of Computer Applications, 145(12), 39-42.
- [12] Paul, D., & Ray, S. K. (2013). A preview on microcontroller basedelectronic voting machine. International Journal of Information and Electronics Engineering, 3(2), 185-190.
- [13] Sudhakar, M., & Sai, B. D. S. (2015). Biometric system based electronic machine using arm9 microcontroller. Journal of Electronics and Communication Engineering, 10(1), 57-65.
- [14] Priya, V. K., Vimaladevi, V., Pandimeenal, B., & Dhivya, T. (2017,May). Arduino based smart electronic voting machine. In 2017International Conference on Trends in Electronics and Informatics(ICEI) (pp. 641-644). IEEE.
- [15] Nagabushanam, P., Radha, S., Selvadass, S., & Joseph, K. K. (2018, April). Gabor filter-based Image segmentation for Disease Detectionusing VHDL. In2018 Second International Conference on InventiveCommunication and Computational Technologies (ICICCT)(pp. 1807-1812). IEEE.
- [16] Radha, S., Shylu, D.S., & Nagabushanam, P. (2019). Power efficient low latency architecture for decoder: Breaking the ACS bottleneck. International Journal of Circuit Theory and Applications, 47(9), 1513-1528.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH

IN COMPUTER & COMMUNICATION ENGINEERING

📵 9940 572 462 🔯 6381 907 438 🔀 ijircce@gmail.com

