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ABSTRACT: Accurate forecasting of agricultural commodity prices is crucial for market stability, food security, and the 
economic well-being of farmers. This paper proposes a hybrid ensemble learning framework designed to predict daily 
agricultural commodity prices by integrating the strengths of Extreme Gradient Boosting (XGBoost) and Long Short-
Term Memory (LSTM) networks. The methodology leverages a dataset of historical daily market prices and associated 
meteorological data. XGBoost is utilized to model complex non-linear relationships across a comprehensive feature set, 
including lagged variables and temporal indicators. Concurrently, distinct LSTM models are trained for each commodity 
to capture specific sequential patterns and temporal dependencies within their respective price histories. Predictions from 
these models are ensembled using a simple averaging technique. For forecasting prices on future dates beyond the 
historical data horizon, a recursive prediction strategy is employed, where predicted prices and estimated environmental 
features iteratively feed back into the models. The ensemble model was rigorously validated on a held-out test set using 
an instance-wise approach that leverages actual historical sequences for LSTM inputs. The proposed system achieved a 
Mean Absolute Error (MAE) of 2.9682, Root Mean Squared Error (RMSE) of 5.2986, an R-squared (R²) value of 0.9865, 
and a Mean Absolute Percentage Error (MAPE) of 6.02%, demonstrating high predictive accuracy and its potential as a 
valuable tool for agricultural market stakeholders. 
 

KEYWORDS: Agricultural Price Prediction, Ensemble Learning, XGBoost, LSTM, Time Series Forecasting, Recursive 
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I. INTRODUCTION 

 

The agricultural sector plays a pivotal role in global economies, directly impacting food security and the livelihoods of 
millions. However, agricultural commodity markets are inherently volatile, influenced by a confluence of factors such as 
climatic conditions, seasonality, geopolitical events, and supply-demand dynamics [1]. This price instability presents 
significant challenges for farmers in planning and obtaining fair returns, for traders in managing inventory and risk, and 
for policymakers in ensuring market stability and consumer affordability.  
 

Traditional econometric models, such as ARIMA, have long been employed for time series forecasting but often struggle 
to capture the complex non-linearities and the impact of diverse exogenous variables prevalent in agricultural markets. 
The advent of machine learning (ML) and deep learning (DL) has offered more powerful tools. ML algorithms like 
Support Vector Machines and tree-based ensembles can model non-linear relationships effectively. DL models, 
particularly Recurrent Neural Networks (RNNs) like Long Short-Term Memory (LSTM), have shown exceptional 
capability in learning long-range dependencies from sequential data, making them well-suited for price time series. 
 

This research presents a hybrid ensemble approach that synergizes Extreme Gradient Boosting (XGBoost), a powerful 
gradient boosting algorithm, with per-commodity LSTM networks. XGBoost is employed to capture complex 
interactions among a wide array of features, including lagged prices, weather data, and temporal indicators, providing a 
global perspective. Simultaneously, individual LSTM models are trained for each specific commodity, allowing them to 
specialize in the unique temporal patterns inherent in that commodity's price history. The predictions from these 
complementary models are then ensembled. A key aspect of this work is the implementation of a recursive forecasting 
mechanism that enables multi-step ahead predictions for future dates where actual data is unavailable. The model's 
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performance is validated using an instance-wise approach on a test set, which provides a realistic assessment of its 
predictive capabilities on unseen data by ensuring LSTM inputs are based on actual prior historical sequences. 
The primary contributions of this study are: 
• The development and evaluation of a hybrid XGBoost and per-commodity LSTM ensemble model for daily agricultural 
price prediction. 
• The implementation and assessment of a recursive forecasting strategy for multi-step ahead predictions. 
• A robust validation methodology demonstrating the ensemble's high accuracy on a held-out test set. 
 

II. RELATED WORK 

 

The domain of agricultural price forecasting has witnessed a significant evolution, moving from traditional statistical 
methods to more sophisticated machine learning and deep learning techniques. Understanding this progression is crucial 
for contextualizing the contributions of the present study. 
 

2.1 Statistical and Econometric Models 

Early research in time series forecasting, including agricultural prices, predominantly relied on statistical models. The 
Autoregressive Integrated Moving Average (ARIMA) model and its seasonal counterpart, SARIMA, as formalized by 
Box et al. [1], have been widely adopted. These models excel at capturing linear dependencies and seasonality within 
price series. For instance, Weng et al. [2] compared ARIMA with neural network approaches for horticultural product 
prices, noting ARIMA's better performance for monthly data but struggles with daily fluctuations. Similarly, Wang [3] 
utilized ARIMA for soybean futures, and Sneha and Bhavana [4] applied it for sugarcane price forecasting in India. 
However, a primary limitation of these models is their inherent assumption of linearity, which often proves insufficient 
for capturing the complex, non-linear dynamics frequently observed in volatile agricultural markets; Kim [5], for 
instance, notes such limitations before exploring SVMs. 
 

2.2 Conventional Machine Learning Approaches 

With advancements in computational power, machine learning (ML) algorithms offered powerful alternatives capable of 
handling non-linearities. Support Vector Machines (SVM), particularly Support Vector Regression (SVR), have been 
applied in financial time series forecasting, as demonstrated by Kim [5]. Tree-based ensemble methods also gained 
prominence. Random Forests (RF) [6] and optimized gradient boosting implementations like XGBoost, detailed by Chen 
& Guestrin [7], have become popular choices. XGBoost, in particular, has shown significant utility in predicting daily 
vegetable prices by incorporating meteorological factors, as highlighted by Li et al. [8], underscoring its suitability for 
tasks involving diverse exogenous variables. Cifci [9] further showcased the broad applicability of various ML models, 
including RF, SVM, and boosting variants, in complex system predictions. 
 

2.3 Deep Learning Models for Time Series 

Deep learning, especially Recurrent Neural Networks (RNNs), marked a significant advancement for modeling sequential 
data like price time series. Long Short-Term Memory (LSTM) networks, proposed by Hochreiter & Schmidhuber [10], 
effectively addressed the vanishing gradient problem inherent in simple RNNs, enabling them to learn long-range 
dependencies. This capability has led to widespread applications. Fischer & Krauss [11] demonstrated LSTM's 
effectiveness in financial market predictions. In the agricultural domain, Meena & Chaitra [12] applied LSTM, Gated 
Recurrent Units (GRU), and 1D-Convolutional Neural Networks (CNN) for Ragi price prediction. Halim et al. [13] 
focused on multivariate LSTM for predicting multiple commodity prices simultaneously, emphasizing the importance of 
handling inter-commodity relationships. Wang & Gao [14] also employed LSTM for soybean futures prediction. More 
recently, Transformer models, such as those described by Vaswani et al. [15] and further developed for time series by 
works like Zhou et al. [16] (Informer), have shown promise in capturing long-range dependencies. Applications include 
the EEMD-NAGU model by Li et al. [17] and multimodal transformers for stock prediction by Lee et al. [18]. 
 

2.4 Hybrid and Ensemble Strategies 

Recognizing that different models possess unique strengths, researchers have increasingly explored hybrid and ensemble 
strategies to achieve superior performance. Hybrid models often combine statistical approaches with ML/DL techniques; 
for instance, Babu & Reddy [19] proposed a hybrid ARIMA-ANN model. Li et al. [17] combined Ensemble Empirical 
Mode Decomposition (EEMD) with an attention-based GRU variant (NAGU). Yu et al. [20] similarly used EMD as a 
preprocessing step for an ensemble neural network approach for crude oil price forecasting. These strategies aim to either 
decompose complex time series or leverage the complementary modeling strengths of different algorithms. The approach 
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in our paper aligns with this trend by creating a hybrid ensemble of XGBoost and per-commodity LSTMs, seeking to 
harness XGBoost's strength in handling structured, tabular data with diverse features and LSTM's proficiency in modeling 
temporal sequences specific to individual commodities. The per-commodity specialization of LSTMs is a key aspect, 
aiming to tailor temporal modeling more precisely than a single, global LSTM might achieve. 
 

III. METHODOLOGY 

 

The proposed methodology for agricultural commodity price prediction involves several stages: 
3.1. Data Acquisition and Preprocessing 

The dataset utilized in this study comprises historical daily data for agricultural and horticultural commodities like tomato, 
potato, onion,rice,wheat,etc, including minimum, maximum, and modal prices (originally in Rs./Quintal), along with 
corresponding daily meteorological data (e.g., average temperatures, rainfall, humidity, wind speed). 
The data is collected from government websites, namely agmarknet.gov.in and India Meteorological Department. 
The preprocessing pipeline includes: 
Data Loading and Initial Cleaning: The raw dataset (e.g., finaldataset.csv) is loaded. 
Date Handling: The 'Date' column is parsed into datetime objects. Any records with invalid dates are dropped. The data 
is then sorted chronologically by 'Commodity' and 'Date', which is essential for time series integrity and lagged feature 
creation. 
Price Unit Conversion: All price columns are converted from Rs./Quintal to Rs./Kg by dividing by 100. The modal 
price in Rs./Kg (termed PRICE_COLUMN_KG or 'Price') is designated as the target variable for prediction. 
Categorical Feature Encoding: The 'Commodity' names are converted into numerical representations using 
LabelEncoder (e.g., Commodity_enc), enabling ML models to process this information. 
 

3.2. Feature Engineering 

Effective feature engineering is crucial for model performance. The following features are generated: 
Temporal Features: From the 'Date', DayOfYear, Month, and Year are extracted. These help the model capture 
seasonality, cyclical patterns, and long-term trends. 
Lagged Price Features: To capture the strong autocorrelation often present in price series, lagged values of the target 
'Price' (and potentially other price-related metrics like original quintal price for consistency if used for lagging before 
conversion) are created. Specifically, prices from 1, 2, and 3 days prior (e.g., Price_lag_1, Price_lag_2, Price_lag_3) are 
generated. This is performed on a per-commodity basis using groupby('Commodity').shift(lag) to ensure lags are 
commodity-specific and do not cross-contaminate series. 
Lagged Weather Features: Given that weather can have a delayed impact on agricultural markets, lagged values of key 
weather variables (e.g., avg_max_temp_lag_1, avg_max_temp_lag_2, avg_max_temp_lag_3) are also created, again on 
a per-commodity basis. 
Final Feature Set and Cleaning: The comprehensive list of features (all_input_features) includes original prices (Min, 
Max in Rs./Kg), encoded commodity, current and lagged weather variables, temporal features, and lagged price features. 
After generating all features, rows containing any NaN values (which primarily arise from the lag creation process at the 
beginning of each commodity's time series) are removed to ensure complete data for model training. 
 

3.3. Model Architectures 

Two distinct modeling paradigms are employed: a global XGBoost model and specialized per-commodity LSTM 
networks. 
 

3.3.1. XGBoost Model Component 
Extreme Gradient Boosting (XGBoost) is a highly efficient and effective tree-based ensemble learning algorithm 
[Reference Chen & Guestrin]. It builds decision trees sequentially, with each new tree aiming to correct the errors of the 
previous ones. XGBoost is known for its performance, regularization capabilities (L1 and L2) to prevent overfitting, and 
its ability to handle sparse data. 
In this framework, a single XGBRegressor model is trained using the all_input_features from all commodities. The input 
features for XGBoost (X_train_full, X_test_full) are scaled using a global MinMaxScaler (fit only on the training data) 
prior to training. Typical hyperparameters configured include n_estimators, learning_rate, max_depth, subsample, and 
colsample_bytree, with the objective set to reg:squarederror. 
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3.3.2. Per-Commodity LSTM Model Component 
Long Short-Term Memory (LSTM) networks are a type of RNN adept at learning long-term dependencies in sequential 
data, making them suitable for time series forecasting [Reference Hochreiter & Schmidhuber]. LSTMs use internal gating 
mechanisms (forget, input, and output gates) to regulate information flow, mitigating the vanishing/exploding gradient 
problems common in simpler RNNs. 
Recognizing that different agricultural commodities can exhibit unique price dynamics, seasonality, and responses to 
market factors, separate LSTM models are trained for each unique commodity present in the dataset. This allows each 
LSTM to specialize its learning. For each commodity: 
Data Subsetting: The historical data is filtered for the specific commodity. 
Scaling: The input features for that commodity are scaled using a commodity-specific MinMaxScaler (fit only on that 
commodity's training data). 
Sequence Generation: The scaled features and target prices are transformed into input sequences of a fixed length 
(N_TIMESTEPS_LSTM = 7 in the code). Each input sample (X) for the LSTM consists of feature data from the past 
N_TIMESTEPS_LSTM days, and the corresponding target (y) is the price on the day immediately following the 
sequence. 
LSTM Architecture: A Sequential Keras model is constructed, typically comprising: 
• An LSTM layer with a specified number of units, return_sequences= True (if followed by another LSTM layer), and an 
input shape of (N_TIMESTEPS_LSTM, number_of_features_per_timestep). 
• Dropout layers (e.g., rate 0.2) for regularization to prevent overfitting. 
• A subsequent LSTM layer (e.g., 32 units), with return_sequences=False. 
• A Dense hidden layer (e.g., 16 units with 'relu' activation). 
• A final Dense output layer with a single unit for predicting the price. 
Compilation and Training: Each LSTM model is compiled using the 'adam' optimizer and 'mean_squared_error' as the 
loss function. EarlyStopping (monitoring validation loss, e.g., val_loss) is employed during training with a defined 
patience to prevent overfitting and restore the best model weights. Commodities with insufficient data to form meaningful 
sequences or train/test splits are skipped. 
 

3.4. Ensemble Strategy 

To leverage the diverse strengths of both XGBoost (handling broad feature interactions) and the specialized LSTMs 
(capturing commodity-specific temporal patterns), their predictions are combined. In this implementation, a simple 
averaging ensemble is used: 
Ensemble Prediction = (XGBoost Prediction + LSTM Prediction) / 2 

This straightforward approach provides a balanced forecast. For instance-wise validation on the test set, if an LSTM 
prediction is unavailable for a specific commodity or instance (e.g., insufficient historical data for sequence formation 
for that test point), the LSTM prediction component might effectively default to the XGBoost prediction, or a mechanism 
to handle missing LSTM predictions would be in place to ensure the ensemble calculation can proceed. 
 

3.5. Recursive Forecasting for Future Dates 

A critical requirement for a practical price forecasting system is the ability to predict prices for future dates where actual 
market and weather data are not yet available. The predict_price_for_future_date function implements a recursive multi-
step forecasting strategy: 
 

1. Initialization: 
• The process starts from the day immediately following the last known historical date for the selected commodity. The 
most recent actual features, including lagged prices and weather, serve as the initial state for generating future lags. 
• An LSTM input deque (lstm_sequence_input_deque) is populated with the scaled feature vectors from the last 
N_TIMESTEPS_LSTM actual historical days for that commodity (if an LSTM model exists for it). 
 

2. Iterative Prediction Loop: The loop progresses one day at a time (current_pred_date) from the day after the last 
known data up to the user-specified target_date. For each current_pred_date: 
• Estimate Exogenous Features: Non-price, non-lagged features (primarily weather, but also date-derived features like 
DayOfYear, Month, Year) for current_pred_date are estimated. The get_estimated_weather_and_other_features function 
in the code uses historical averages for the commodity around the same day of the year, with fallbacks to broader averages 
if specific data is sparse. Min/Max prices are also naively estimated (e.g., as a percentage of the previous day's predicted 
modal price). 
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• Construct Feature Vector: A full feature vector for current_pred_date is assembled. This includes the estimated 
exogenous features and lagged features. Lagged prices (e.g., Price_lag_1) are derived from the previous day's (which 
would be a predicted price if beyond the first recursive step) state. Similarly for lagged weather features. 
• XGBoost Prediction: The constructed feature vector is scaled (using the global XGBoost scaler) and fed to the trained 
XGBoost model to obtain predicted_price_xgb_for_step 

• LSTM Prediction: If an LSTM model exists for the commodity and the lstm_sequence_input_deque contains a full 
sequence of N_TIMESTEPS_LSTM feature vectors, this sequence is fed to the LSTM model to obtain 
predicted_price_lstm_for_step. 
• Ensemble for Step: The XGBoost and LSTM predictions are ensembled (averaged) to get ensembled_price_for_step. 
A non-negativity constraint is applied (price >= 0). 
• Update State for Next Step: The dictionary holding the current day's features (current_day_features_dict) is updated. 
The ensembled_price_for_step becomes the 'Price' for current_pred_date. Lagged price and weather features are shifted 
(e.g., previous Price_lag_1 becomes new Price_lag_2), and current weather features are updated with the estimated 
values. 
• Update LSTM Deque: The feature vector representing current_pred_date (which was used to make the predictions) is 
scaled using the commodity-specific LSTM scaler and appended to the lstm_sequence_input_deque. 
 

3.Termination: The loop continues until the target_date is reached. The ensembled prediction for this target date is then 
returned. This recursive process allows for projections, though accuracy typically diminishes with an increasing forecast 
horizon due to error accumulation. 
 

IV. EXPERIMENTAL SETUP 

 

4.1. Dataset and Splitting 

The study utilize a consolidated dataset comprising daily historical commodity prices and corresponding meteorological 
data. For model training and evaluation, the entire dataset is split chronologically into a training set (80% of the data) and 
a test set (the remaining 20%). The shuffle=False parameter is strictly enforced during this split to ensure that the test set 
represents data points that are chronologically later than the training set, simulating a real-world forecasting scenario and 
preventing data leakage from the "future" into the "past." This global split is used for the XGBoost model and the final 
ensemble validation. For per-commodity LSTM models, their respective data subsets are also split chronologically for 
training and internal validation. 
 

4.2. Evaluation Metrics 

The performance of the proposed ensemble model is assessed using standard regression evaluation metrics: 
• Mean Absolute Error (MAE): Measures the average absolute difference between actual and predicted values. 
MAE = (1/n) * Σ|actualᵢ - predictedᵢ| 
• Root Mean Squared Error (RMSE): Represents the square root of the average of squared differences, penalizing 
larger errors more heavily. It is in the same units as the target variable. 
RMSE = sqrt((1/n) * Σ(actualᵢ - predictedᵢ)²) 
• R-squared (R²): Indicates the proportion of the variance in the dependent variable (price) that is predictable from the 
independent variables (features). Values closer to 1 indicate a better fit. 
R² = 1 - (SS_res / SS_tot), where SS_res = sum of squared residuals, SS_tot = total sum of squares. 
• Mean Absolute Percentage Error (MAPE): Expresses the average absolute error as a percentage of the actual values. 
It provides a relative measure of error. 
MAPE = (1/n) * Σ(|(actualᵢ - predictedᵢ) / actualᵢ|) * 100% 

(Note: MAPE can be sensitive if actual values are zero or very close to zero.) 
 

4.3. Validation of Ensemble on Test Data (Instance-wise) 
A key aspect of this study's evaluation is the rigorous validation of the ensemble strategy on the global test set 
(X_test_full, y_test_full). This is performed instance-wise for each data point in the test set: 
1. For a given test instance i, the XGBoost model generates a prediction (xgb_pred) using its scaled features. 
2. To obtain the LSTM prediction for the same instance i: 
• The specific commodity and date of instance i are identified from the test set metadata. 
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• The N_TIMESTEPS_LSTM sequence of actual historical feature vectors immediately preceding the date of instance i 
for that specific commodity is retrieved from the complete historical dataset (df). This ensures the LSTM input is based 
on true past data, not recursively generated data, for this validation step. 
• This historical sequence is scaled using the appropriate commodity-specific LSTM scaler. 
• The scaled sequence is fed into the trained LSTM model for that commodity to get its prediction (lstm_pred). 
• If an LSTM model is unavailable for the commodity or a full sequence cannot be formed, a fallback is used (e.g., 
lstm_pred defaults to xgb_pred to allow ensemble calculation). 
3. The xgb_pred and lstm_pred are then combined using the simple averaging ensemble strategy. 
This instance-wise validation provides a realistic assessment of how the ensemble would perform when LSTM has access 
to genuine preceding history for each point it predicts in the test phase. The performance metrics reported in Section 5 
are derived from this meticulous validation process. 
 

V. RESULTS AND DISCUSSION 

 

The hybrid XGBoost and per-commodity LSTM ensemble model was evaluated on the held-out test set according to the 
instance-wise validation protocol described in Section 4.3. The aggregated performance metrics are presented in Table 1. 
Table 1: Ensemble Model Performance on Test Set 
Metric                Value 

MAE               2.9682 

RMSE               5.2986 

R²               0.9865 

MAPE (%)  6.02 

 

5.1. Quantitative Performance Analysis 

The results shown in Table 1 indicate a strong predictive capability of the proposed ensemble model. An R-squared (R²) 
value of 0.9865 is particularly noteworthy. This suggests that approximately 98.65% of the variance in the daily modal 
prices (in Rs./Kg) within the test set can be explained by the model, signifying an excellent fit to the unseen data and 
high explanatory power. 
The Mean Absolute Error (MAE) of 2.9682 indicates that, on average, the model's price predictions deviate from the 
actual prices by approximately ₹2.97 per Kg. The Root Mean Squared Error (RMSE) of 5.2986, being higher than the 
MAE as expected due to its penalization of larger errors, still represents a relatively low error margin in the context of 
potentially volatile agricultural prices. The magnitude of these errors is generally acceptable for many practical decision-
making scenarios in agricultural trading and planning. 
A Mean Absolute PercentageError (MAPE) of 6.02% further supports the model's accuracy, implying that the average 
prediction error is approximately 6% relative to the actual price. This level of percentage error is often considered good 
in price forecasting applications. 
 

5.2. Qualitative Visual Analysis 

 

Figure 1: Ensemble: Actual vs. Predicted Prices (Full Test Set) 
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The scatter plot presented in Figure 1 visually compares the actual prices against the ensemble model's predicted prices 
for the entire test set. The points generally cluster tightly around the "Ideal Fit" line (y=x), which is dashed in red. This 
visual evidence corroborates the high R² value, indicating a strong positive correlation and good agreement between the 
predicted and actual values across a wide range of prices. While most points are close to the ideal line, some scatter, 
particularly at higher price points, suggests areas where the model might face greater challenges, possibly due to 
heightened volatility or less frequent extreme price events in the training data. Overall, the plot demonstrates the model's 
robust ability to track actual price movements.    
 

5.3. Discussion of Findings 

The strong performance metrics and visual agreement demonstrate the efficacy of the hybrid ensemble approach. The 
combination of XGBoost's ability to model complex interactions across a diverse feature set and the per-commodity 
LSTMs' specialization in capturing unique temporal dependencies appears to be synergistic. XGBoost likely excels at 
incorporating the immediate impact of lagged prices, weather, and broader market conditions, while LSTMs refine 
predictions by learning subtle, commodity-specific sequential nuances over time. 
The recursive forecasting mechanism, while essential for practical future prediction, inherently faces challenges. The 
reliance on estimated weather features (based on historical averages) and naively estimated Min/Max prices for future 
steps introduces potential inaccuracies. The further into the future the prediction extends, the more these estimations and 
the model's own prediction errors from previous steps can compound, typically leading to a degradation in forecast 
accuracy over longer horizons. This is a common limitation in multi-step time series forecasting. 
 

VI. CONCLUSION AND FUTURE WORK 

 

This research successfully developed and validated a hybrid ensemble model combining XGBoost and per-commodity 
LSTM networks for daily agricultural price prediction. The model demonstrated high predictive accuracy on a held-out 
test set, achieving an R² of 0.9865, MAE of 2.9682, RMSE of 5.2986, and MAPE of 6.02%. The inclusion of 
comprehensive feature engineering, tailored LSTM models for individual commodities, and a practical recursive 
forecasting function highlights its potential utility for various stakeholders in the agricultural sector, aiding in informed 
decision-making regarding trading, storage, and policy. 
Future research could explore several avenues to enhance the current framework: 
 

1. Hyperparameter Optimization: Rigorous hyperparameter optimization for both XGBoost and the LSTM 
architectures (e.g., using Bayesian optimization or genetic algorithms) could further fine-tune model performance. 
 

2.Attention Mechanisms and Transformers: Incorporating attention mechanisms within LSTMs or exploring 
Transformer-based models for the time series component might allow the model to better capture salient long-range 
dependencies and complex temporal patterns. 
 

3.Causal Inference: Moving beyond correlation to explore causal inference techniques could provide deeper insights 
into the actual drivers of price movements. 
By addressing these areas, the robustness and utility of agricultural price forecasting systems can be continually 
improved, contributing to greater efficiency and stability in the agricultural domain. 
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