

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH

IN COMPUTER & COMMUNICATION ENGINEERING

Volume 12, Issue 7, July 2024

Impact Factor: 8.379

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

|| Volume 12, Issue 7, July 2024 ||

| DOI: 10.15680/IJIRCCE.2024.1207014 |

Deep Learning Techniques Overview

C Sai Vanaja, G S Uday Kiran Babu, D William Albert

Department of Computer Science Engineering, Bheema Institute of Technology &Science, Adoni, India

ABSTRACT: Deep Learning is a class of machine learning which performs much better on unstructured data. Deep learning techniques are outper-forming current machine learning techniques. It enables computational models to learn features progressively from data at multiple levels. The popularity of deep learning amplified as the amount of data available increased as well as the advancement of hardware that provides powerful computers. This article comprises of the evolution of deep learning, vari- ous approaches to deep learning, architectures of deep learning, methods, and applications.

KEY WORDS: Deep Learning (DL), Recurrent Neural Network (RNN), Deep Belief Networks (DBN), Convolutional Neural Networks(CNN), Generative Adversarial Networks(GAN)

I. INTRODUCTION

Deep learning techniques which implement deep neural networks became pop- ular due to the increase of high-performance computing facility. Deep learning achieves higher power and flexibility due to its ability to process a large number of features when it deals with unstructured data. Deep learning algorithm passes the data through several layers; each layer is capable of extracting features pro- gressively and passes it to the next layer. Initial layers extract low-level features, and succeeding layers combines features to form a complete representation. Section 2 gives an overview of the evolution of deep learning models. Section 3 provides a brief idea about the different learning approaches, such as supervisedlearning, unsupervised learning, and hybrid learning. Supervised learning uses labeled data to train the neural network. In supervised learning, the network uses unlabeled data and learns the recurring patterns. Hybrid learning combines supervised and unsupervised methods to get a better result. Deep learning can be implemented using different architectures such as architectures like Unsuper-vised Pre-trained Networks, Convolutional Neural Networks, Recurrent Neural Networks, and Recursive Neural Networks, which are described in section 4. Section 5 introduces various training methods and optimization techniques that help in achieving better results. Section 6 describes the frameworks which allow us to develop tools that offer a better programming environment. Despite the various challenges in deep learning applications, many exciting applications that may rule the world are briefed in Section 7.

1. Evolution of Deep Learning

First Generation of Artificial Neural networks(ANN) was composed of per- ceptrons in neural layers, which were limited in computations. The second-generation calculated the error rate and backpropagated the error. Restricted Boltzmann machine overcame the limitation of backpropagation, which made the learning easier. Then other networks are evolved eventually [15, 24]. Figure.1 illustrates a timeline showing the evolution of deep models along with the tra- ditional model. The performance of classifiers using deep learning improves on a large scale with an increased quantity of data when compared to traditional learning methods. Figure.2 depicts the performance of traditional machine learn- ing algorithms and deep learning algorithms [6]. The performance of traditional machine learning algorithms becomes stable when it reaches the threshold of training data whereas the deep learning upturns it's performance with increased amount of data. Now a days deep learning is used in a lot many applications such as Google's voice and image recognition, Netflix and Amazon's recommendation engines, Apple's Siri, automatic email and text replies, chatbots etc.

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | | Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

|| Volume 12, Issue 7, July 2024 ||

| DOI: 10.15680/IJIRCCE.2024.1207014 |

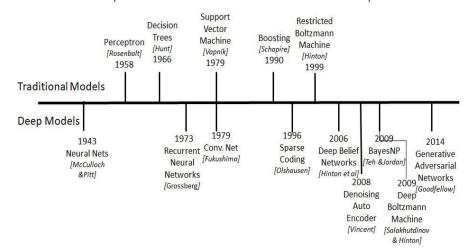


Fig. 1: Evolution of Deep Models

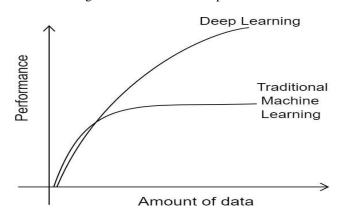


Fig. 2: Why Deep Learning

2. Deep Learning Approaches

Deep neural networks are successful in Supervised learning, Unsupervised learn- ing, Reinforcement learning, as well as hybrid learning.

2.1 Supervised Learning

In supervised learning, the input variables represented as X are mapped to out- put variables represented as Y by using an algorithm to learn the mapping function f.

$$Y = f(X) \tag{1}$$

The aim of the learning algorithm is to approximate the mapping function to predict the output (Y) for a new input (X). The error from the predictions madeduring training can be used to correct the output. Learning can be stopped when all the inputs are trained to get the targeted output [11]. Regression for solving regression problems [18], Support Vector machines used for classification [21]], Random forest for classification as well as regression problems [20].

2.2 Unsupervised Learning

In unsupervised learning, we have the input data only and no corresponding out-put to map. This learning aims to learn about data by modeling the distribution in data. Algorithms can be able to discover the exciting structure present in the data. Clustering problems and association problems use Unsupervised learning. The unsupervised learning algorithms such as K-means algorithm is used in clustering problems [9], Apriori algorithm is used in association problems [10]

2.3Reinforcement Learning

Reinforcement learning uses a system of reward and punishment to train the algorithm. In this, the algorithm or an agent learns from its environment. The agent gets rewards for correct performance and penalty for incorrect

International Journal of Innovative Research in Computer and Communication Engineering

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

|| Volume 12, Issue 7, July 2024 ||

| DOI: 10.15680/IJIRCCE.2024.1207014 |

perfor- mance. For example, consider the case of a self-driving car, the agent gets a reward for driving safely to destination and penalty for going off-road. Similarly, in the case of a program for playing chess, the reward state may be winning the game and the penalty for being checkmated. The agent tries to maximize the reward and minimize the penalty. In reinforcement learning, the algorithm is nottold how to perform the learning; however, it works through the problem on its own [16].

2.4 Hybrid Learning

Hybrid learning refers to architectures that make use of generative (unsuper- vised) as well as discriminative (supervised) components. The combination of different architectures can be used to design a hybrid deep neural network. They are used for action recognition of humans using action bank features and are expected to produce much better results [3].

II. FUNDAMENTAL DEEP LEARNING ARCHITECTURES

Deep learning architectures perform better than simple ANN, even though train- ing time of deep structures are higher than ANN. However, training time can be reduced using methods such as transfer learning, GPU computing. One of the factors which decide the success of neural networks lies in the careful design of network architecture. Some of the relevant deep learning architectures are discussed below.

3.1Unsupervised Pre-trained Networks

In unsupervised pre-training, a model is trained unsupervised, and then the model used for prediction. Some unsupervised pre-training architectures are dis-cussed below [4].

Autoencoders: are used for the reduction of the dimension of data, novelty detection problems, as well as in anomaly detection problems. In an autoencoder, the first layer is built as an encoding layer and transpose of that as a decoder. Then train it to recreate the input using the unsupervised method. After train-ing, fix the weights of that layer. Then move to the subsequent layer until we pre-train all the layers of deep net. Then go back to the original problem that we want to solve with deep net (Classification/Regression) and optimize it with Stochastic gradient descent by starting from weights learned using pre-training.

Autoencoder network consists of two parts [7]. The input is translated to a latent space representation by the encoder, which can be denoted as:

$$h = f(x) \tag{2}$$

The input is reconstructed from the latent space representation by the decoder, which can be denoted as: r = g(h) (3)

In essence, autoencoders can be described as in equation (4). r is the decoded output which will be similar to input x:

$$g(f(x)) = r (4)$$

3.2Convolutional Neural Networks

Convolutional Neural Networks (CNN) are used mainly for images. It assigns weights and biases to various objects in the image and differentiates one from the other. It requires less preprocessing related to other classification algorithms. CNN uses relevant filters to capture the spatial and temporal dependencies in an image [12, 25]. The different CNN architectures include LeNet, AlexNet, VG- GNet, GoogleNet, ResNet, ZFNet. CNN's are mainly used in applications such as Object Detection, Semantic Segmentation, Captioning.

3.3 Recurrent Neural Networks

In recurrent neural networks (RNN), outputs from the preceding states are fed as input to the current state. The hidden layers in RNN can remember information. The hidden state is updated based on the output generated in the previous state.RNN can be used for time series prediction because it can remember previous inputs also, which is called Long-Short Term Memory [2].

III. DEEP LEARNING METHODS

Some of the powerful techniques that can be applied to deep learning algorithms to reduce the training time and to optimize the model are discussed in the follow-ing section. The merits and demerits of each method are comprised

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

|| Volume 12, Issue 7, July 2024 ||

| DOI: 10.15680/IJIRCCE.2024.1207014 |

in the Table 1

Back propagation: While solving an optimization problem using a gradient- based method, backpropagation can be used to calculate the gradient of the function for each iteration [18].

Stochastic Gradient Descent: Using the convex function in gradient descent algorithms ensures finding an optimal minimum without getting trapped in a lo- cal minimum. Depending upon the values of the function and learning rate or step size, it may arrive at the optimum value in different paths and manners [14].

Learning Rate Decay: Adjusting the learning rate increases the performance and reduces the training time of stochastic gradient descent algorithms. The widely used technique is to reduce the learning rate gradually, in which we can make large changes at the beginning and then reduce the learning rate gradually in the training process. This allows fine-tuning the weights in the later stages [7].

Dropout: The overfitting problem in deep neural networks can be addressed us-ing the drop out technique. This method is applied by randomly dropping units and their connections during training [9]. Dropout offers an effective regular- ization method to reduce overfitting and improve generalization error. Dropout gives an improved performance on supervised learning tasks in computer vision, computational biology, document classification, speech recognition [1].

Max-Pooling: In max-pooling a filter is predefined, and this filter is then applied across the nonoverlapping sub-regions of the input taking the max of the values contained in the window as the output. Dimensionality, as well as the computational cost to learn several parameters, can be reduced using max-pooling [23].

Batch Normalization: Batch normalization reduces covariate shift, thereby accelerating deep neural network. It normalizes the inputs to a layer, for each mini-batch, when the weights are updated during the training. Normalization stabilizes learning and reduces the training epochs. The stability of a neural net- work can be increased by normalizing the output from the previous activation layer [8].

Transfer learning: In transfer learning, a model trained on a particular task is exploited on another related task. The knowledge obtained while solving a particular problem can be transferred to another network, which is to be trained on a related problem. This allows for rapid progress and enhanced performance while solving the second problem [17].

Table 1: Comparison of Deep learning methods

Method	Description	Merits	Demerits	
Back	Used in	For calculation	Sensitive to noisy	
propagation	Optimization problem	of gradient	data	
Stochastic	To find optimal		Longer convergence	
Gradient	minimum in	Avoids trapping in	time,	
Descent	optimization problems	local minimum	computationally expensive	
Learning	Reduce learning	Increases	Computationally	
Rate Decay	rate gradually	performance, Reduces training time	expensive	
Dropout	Dropsout units/ connection during training	Avoids overfitting	Increases number of iterations required to converge	
Max- Pooling	Applies a max filter	Reduces dimension and computational cost	Considers only the maximum element which may lead to unacceptable result in some cases	

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

|| Volume 12, Issue 7, July 2024 ||

| DOI: 10.15680/IJIRCCE.2024.1207014 |

		Reduces covariant	
			Computational
Batch	normalization	Increases stability of	overhead during
		the network,	training
I		Network trains faster,	
		Allows higher	
		learning rates	
	Used in word	Can work on any raw	Softmax function is
Skip-gram	embedding	text, Requires less	computationally
	algorithms	memory	expensive, Training
			Time is high
	Knowledge of	Enhances	
Transfer	first model is	performance,	Works with similar
learning	transferred to	Rapid progress in	problems only
	second problem	training of second	
		problem	

IV. DEEP LEARNING FRAMEWORKS

A deep learning framework helps in modeling a network more rapidly without going into details of underlying algorithms. Each framework is built for different purposes differently. Some deep learning frameworks are discussed below and are summarized in Table 2.

TensorFlow TensorFlow, developed by Google brain, supports languages such as Python, C++and R. It enables us to deploy our deep learning models in CPUsas well as GPUs [22].

Keras Keras is an API, written in Python and run on top of TensorFlow. It enables fast experimentation. It supports both CNNs and RNNs and runs on CPUs and GPUs [22].

PyTorch PyTorch can be used for building deep neural networks as well as ex-ecuting tensor computations. PyTorch is a Python-based package that provides Tensor computations. PyTorch delivers a framework to create computational graphs [22].

Caffe Yangqing Jia developed Caffe, and it is open source as well. Caffe stands out from other frameworks in its speed of processing as well as learning from images. Caffe Model Zoo framework facilitates us to access pretrained models, which enable us to solve various problems effortlessly [22].

Table 2: Comparison of Deep Learning Frameworks

Deep	Releas	Language	CUDA	Pre-
Learning	e	written in	supporte	trained
Framework	Year		d	models
TensorFlow	2015	C++,	Yes	Yes
		Python		
Keras	2015	Python	Yes	Yes
PyTorch	2016	Python, C	Yes	Yes
Caffe	2013	C++	Yes	Yes
Deeplearning4j	2014	C++, Java	Yes	Yes

Applications of Deep Learning

Deep learning networks can be used in a variety of applications such as self- driving cars, Natural Language Processing, Google's Virtual Assistant, Visual Recognition, Fraud detection, healthcare, detecting developmental delay in chil- dren, adding sound to silent movies, automatic machine translation, text to im- age translation, image to image synthesis, automatic image recognition, Image colorization, earthquake prediction, market-rate forecasting, news aggregation and fraud news detection.

International Journal of Innovative Research in Computer and Communication Engineering

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | A Monthly Peer Reviewed & Referred Journal |

|| Volume 12, Issue 7, July 2024 ||

| DOI: 10.15680/IJIRCCE.2024.1207014 |

V. CONCLUSION

Deep learning is continuously evolving faster; still, there are a number of prob- lems to deal with and can be solved using deep learning. Even though a full understanding of the working of deep learning is still a mystery, we can make machines smarter using Deep learning, sometimes even smarter than human. Now the aim is to develop deep learning models that work with mobile to make the applications smarter and more intelligent. Let deep learning be more devoted to the betterment of humanity and thus making our domain a better place to live.

REFERENCES

- 1.Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal representations through noisy computation. IEEE transactions on pattern analy- sis and machine intelligence, 40(12):2897–2905, 2018. doi: 10.1109/TPAMI.2017. 2784440.
- 2.Filippo Maria Bianchi, Enrico Maiorino, Michael C Kampffmeyer, Antonello Rizzi, and Robert Jenssen. An overview and comparative analysis of recurrent neural networks for short term load forecasting. arXiv preprint arXiv:1705.04378, 2017.in Signal Processing, 7(3–4):197–387, 2014. doi: 10.1007/
- 3. Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pas- cal Vincent, and Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 11(Feb):625–660, 2010.
- 4.Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680, 2014.
- 5.Palash Goyal, Sumit Pandey, and Karan Jain. Introduction to natural language processing and deep learning. In Deep Learning for Natural Language Processing, pages 1–74. Springer, 2018. doi: 10.1007/978-1-4842-3685-7 1.
- 6.Nathan Hubens. Deep inside: Autoencoders towards data science, Apr 2018.
- 7.Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH

IN COMPUTER & COMMUNICATION ENGINEERING

📵 9940 572 462 🔯 6381 907 438 🔀 ijircce@gmail.com

