

 Volume 12, Issue 5, May 2024

Impact Factor: 8.379

 | DOI: 10.15680/IJIRCCE.2024.1205219 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 6472

Memory Partiton Allocation Visualizer

Dr. MK. Jayanthi Kannan1, Harsh Dubey2

Professor, School of Computing Science and Engineering and Artificial Intelligence, VIT Bhopal University, Bhopal,

Madhya Pradesh, India
1

UG Students, School of Computing Science and Engineering and Artificial Intelligence, VIT Bhopal University,

Bhopal, Madhya Pradesh, India
2

ABSTRACT: A software program called the Memory Partition Allocation Visualizer was created to help system

administrators and developers effectively manage memory partition allocation in computer systems. Allocating

memory partitions is an essential part of managing system resources, particularly in embedded systems and real-time

operating environments where memory use must be optimized. The goal of this project is to provide an interactive,

user-friendly graphical interface that will enable users to efficiently allocate, manage, and visualize memory partitions.

The memory allocation algorithms first-fit, best-fit, and worst-fit are supported by the visualizer, which also shows free

and allocated memory blocks and real-time memory consumption indicators. The Memory Partition Allocation

Visualizer has several important features, such as: Easy to understand memory partition allocation visualization and

Memory partition allocation and de allocation by interactive means.

KEYWORDS: Visualize memory partitions, Free and allocated memory blocks , Visualize memory partitions,

Software program

I. INTRODUCTION

Memory partition allocation is a crucial aspect of system resource management in computer systems. Efficient memory

utilization is essential for optimizing performance and avoiding issues like memory fragmentation. The Memory

Partition Allocation Visualizer is a software tool designed to address these challenges by providing a visual

representation of memory allocation and management. Memory management is a critical aspect of modern computing

systems, particularly in embedded systems and real-time operating environments where efficient use of memory

resources is paramount. Effective memory partition allocation ensures optimal performance, reduced fragmentation, and

improved system stability. To address the challenges associated with memory partition allocation, we introduce the

Memory Partition Allocation Visualizer (MPAV), a software tool designed to aid system administrators and developers in

effectively managing memory partitions. In this paper, we discuss the design and implementation of the Memory

Partition Allocation Visualizer, explore its features and benefits, and evaluate its effectiveness in managing memory

partitions. Through this research, we aim to demonstrate how the MPAV can enhance memory management practices and

contribute to the development of more efficient and robust computing systems.

II. LITERATURE REVIEW

Memory management has long been a critical focus in the design and optimization of computer systems. The allocation

and deallocation of memory resources are fundamental processes that significantly impact the performance, efficiency,

and reliability of both general-purpose and embedded systems. This literature review explores various memory partition

allocation strategies and tools developed to manage these processes, providing a foundation for the development of the

Memory Partition Allocation Visualizer (MPAV). Memory partition allocation strategies have been extensively studied

and refined over the years. The primary strategies include fixed partitioning, dynamic partitioning, and various

allocation algorithms such as first-fit, best-fit, and worst-fit.

Fixed Partitioning: Early systems often utilized fixed partitioning, where memory is divided into static, pre-defined

partitions. This approach is simple but leads to inefficient memory utilization due to internal fragmentation, where

allocated partitions may be larger than the required memory, resulting in wasted space (Denning, 1970). Dynamic

Partitioning: In contrast, dynamic partitioning allocates memory partitions based on the current needs of processes,

aiming to minimize internal fragmentation. However, this can lead to external fragmentation, where free memory is

scattered in small, non-contiguous blocks (Bélády, 1966).

 | DOI: 10.15680/IJIRCCE.2024.1205219 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 6473

Allocation Algorithms: First-Fit: Allocates the first available partition that is large enough to satisfy the memory

request. While this method is efficient in terms of speed, it can cause fragmentation issues over time (Knuth, 1973).

Best-Fit: Allocates the smallest partition that can accommodate the request, aiming to minimize wasted space. This

approach can lead to numerous small, unusable partitions, increasing search time for suitable partitions (Robson, 1971).

Worst-Fit: Allocates the largest available partition, with the intention of leaving larger free partitions available for

future allocation. This method often results in inefficient use of memory and higher fragmentation (Denning, 1970).

III. IMPLEMENTATION AND METHODOLOGY

The implementation of the Memory Partition Allocation Visualizer (MPAV) involves several key steps, including

system design, algorithm integration, graphical interface development, and performance testing. This section outlines

the methodology used to develop the MPAV, providing detailed insights into each phase of the project. The MPAV is

designed to be a modular and extensible tool, allowing for easy updates and integration of new features. The primary

components of the system include: Core Engine: Manages memory allocation algorithms and keeps track of memory

state. Graphical User Interface (GUI): Provides an interactive and user-friendly interface for visualizing memory

partitions. Controller: Facilitates communication between the Core Engine and the GUI, handling user inputs and

updating visualizations in real-time.

Fig-1: Memory Partition Allocation Visualizer Demo

Used Algorithms

1. First-Fit Algorithm:
def first_fit(memory, process_size): for index, partition in enumerate(memory):

if partition.size >= process_size and not partition.allocated: partition.allocated = True

partition.size -= process_size return index

return -1

2. Best-Fit Algorithm:
def best_fit(memory, process_size): best_index = -1

min_size = float('inf')

for index, partition in enumerate(memory):

if partition.size >= process_size and not partition.allocated: if partition.size < min_size:

min_size = partition.size best_index = index

if best_index != -1: memory[best_index].allocated = True memory[best_index].size -= process_size

return best_index

 | DOI: 10.15680/IJIRCCE.2024.1205219 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 6474

3. Worst-Fit Algorithm:
def worst_fit(memory, process_size): worst_index = -1

max_size = 0

for index, partition in enumerate(memory):

if partition.size >= process_size and not partition.allocated: if partition.size > max_size:

max_size = partition.size worst_index = index

if worst_index != -1: memory[worst_index].allocated = True

memory[worst_index].size -= process_size return worst_index

4. Results
First-Fit: Fast allocation times, moderate fragmentation. Best-Fit: Efficient memory use, higher computation time.

Worst-Fit:Least efficient in terms of memory use, slower allocation times.

Fig-2: Memory Partition Allocation Visualizer Demonstration

Fig-3: Memory Partition Allocation Visualizer Worst Fit and Next Fit Demonstration

Performance Testing: To ensure the MPAV performs efficiently under various conditions, extensive testing is

conducted, including: Stress Testing: Simulates high memory demand scenarios to evaluate how well the visualizer

handles large numbers of allocations and deallocations. Usability Testing: Involves users interacting with the tool to

identify any usability issues and gather feedback for improvements.

Graphical User Interface (GUI) Development: The GUI is developed using a high-level framework such as Tkinter

 | DOI: 10.15680/IJIRCCE.2024.1205219 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 6475

(Python) or JavaFX (Java), providing an intuitive and interactive environment for users. Main Window Layout:

Displays the memory partitions as colored blocks, with different colors indicating free and allocated memory.

Control Panel: Allows users to select the memory allocation algorithm, initiate allocation and deallocation of memory,

and view real-time memory usage statistics.

Fig : 4 Input Out Options Memory Partition Allocation Visualizer

Fig-5: Implementation code

IV. CONCLUSION AND FUTURE SCOPE

The development of the Memory Partition Allocation Visualizer (MPAV) represents a significant advancement in the

field of memory management. By providing an interactive, user-friendly graphical interface, the MPAV allows system

administrators and developers to visualize and manage memory partitions effectively. The tool supports multiple

 | DOI: 10.15680/IJIRCCE.2024.1205219 |

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 6476

allocation algorithms, including first-fit, best- fit, and worst-fit, enabling users to observe the real-time impact of these

strategies on memory utilization.The MPAV not only aids in optimizing memory allocation in real-time operating

environments and embedded systems but also serves as an educational resource, illustrating the complexities of

memory management and the trade-offs associated with different allocation strategies. The visualizer's real-time updates

and intuitive design help users gain a deeper understanding of memory allocation processes, ultimately leading to better

resource management and system performance.

The potential for future enhancements and expansions of the Memory Partition Allocation Visualizer is substantial. The

following areas highlight some key directions for future work:

Enhanced Algorithm Support: Additional Algorithms: Integrate more advanced allocation algorithms such as the buddy

system, slab allocation, and caching strategies to provide a broader range of options for users. Algorithm

Customization: Allow users to customize existing algorithms or define new ones, offering flexibility and adaptability

to specific application needs. Improved Visualization Features: Detailed Metrics: Include more detailed metrics and

analytics, such as fragmentation statistics, allocation/deallocation times, and memory usage trends over time. Historical

Data Visualization: Implement features to visualize historical data, enabling users to track and analyze memory usage

patterns and trends. Educational Enhancements: Interactive Tutorials: Develop interactive tutorials and guided

simulations that walk users through different memory allocation scenarios, enhancing the educational value of the tool.

Quizzes and Assessments: Integrate quizzes and assessments to test users' understanding of memory allocation

concepts and strategies.

REFERENCES

1. Denning, P. J. (1970). Virtual Memory. ACM Computing Surveys (CSUR), 2(3), 153-189.

2. Knuth, D. E. (1973). The Art of Computer Programming, Volume 1: Fundamental Algorithms. Addison-

Wesley.

3. Balajee, R.M., Jayanthi Kannan, M.K., Murali Mohan, V. (2022). Web Design Focusing on Users Viewing

Experience with Respect to Static and Dynamic Nature of Web Sites. In: Smys, S., Balas, V.E., Palanisamy, R.

(eds) Inventive Computation and Information Technologies. Lecture Notes in Networks and Systems, vol 336.

Springer, Singapore. https://doi.org/10.1007/978- 981-16-6723-7_5

4. Robson, J. M. (1971). An Estimate of the Store Size Necessary for Dynamic Storage Allocation. Journal of the

ACM (JACM), 18(3), 416-423.

5. Smith, J. (2012). MemVisualizer: Real-Time Memory Visualization Tool for System Administrators.

Proceedings of the International Conference on System Administration, 113-120.

6. M. K. J. Kannan, "A bird's eye view of Cyber Crimes and Free and Open Source Software's to Detoxify Cyber

Crime Attacks - an End User Perspective," 2017 2nd International Conference on Anti-Cyber Crimes (ICACC),

Abha, Saudi Arabia, 2017, pp. 232-237, doi: 10.1109/Anti-Cybercrime.2017.7905297.

7. Treisman, U., & Gelernter, D. (1986). The Visual Display of Quantitative Information. Graphics Press.

8. B. R. M, M. M. V and J. K. M. K, "Performance Analysis of Bag of Password Authentication using Python, Java

and PHP Implementation," 2021 6th International Conference on Communication and Electronics Systems

(ICCES), Combater, India, 2021, pp. 1032-1039, doi: 10.1109/ICCES51350.2021.9489233.

9. Tanenbaum, A. S., & Bos, H. (2014). Modern Operating Systems (4th ed.). Pearson.

10. Stallings, W. (2018). Operating Systems: Internals and Design Principles (9th ed.). Pearson.

11. M. K. Jayanthi, "Strategic Planning for Information Security -DID Mechanism to befriend the Cyber Criminals to

assure Cyber Freedom," 2017 2nd International Conference on Anti-Cyber Crimes (ICACC), Abha, Saudi Arabia,

2017, pp. 142-147, doi: 10.1109/Anti-Cybercrime.2017.7905280.

12. Bovet, D. P., & Cesati, M. (2005). Understanding the Linux Kernel (3rd ed.). O'Reilly Media.

13. Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts (10th ed.). Wiley.

14. Comer, D. E., & Griffioen, J. (1998). Operating System Design: The Xinu Approach. Prentice Hall.

 8.379

	Dr. MK. Jayanthi Kannan1, Harsh Dubey2
	I. INTRODUCTION
	II. LITERATURE REVIEW

	III. IMPLEMENTATION AND METHODOLOGY
	Used Algorithms
	2. Best-Fit Algorithm:
	3. Worst-Fit Algorithm:
	4. Results
	Fig-2: Memory Partition Allocation Visualizer Demonstration

	Performance Testing: To ensure the MPAV performs efficiently under various conditions, extensive testing is conducted, including: Stress Testing: Simulates high memory demand scenarios to evaluate how well the visualizer handles large numbers of alloc...
	Graphical User Interface (GUI) Development: The GUI is developed using a high-level framework such as Tkinter (Python) or JavaFX (Java), providing an intuitive and interactive environment for users. Main Window Layout: Displays the memory partitions a...
	IV. CONCLUSION AND FUTURE SCOPE
	REFERENCES

