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ABSTRACT: In the current digital environment, cyberattacks continue to pose a serious risk and difficulty. Devices 

connected to the Internet of Things (IoT) are becoming more vulnerable due to security problems like ransomware, 

malware, insufficient encryption, and IoT botnets. These flaws may result in ransom demands, data manipulation, 

unauthorised access, and system threats. Creating strong cybersecurity protocols for contemporary smart environments 

is necessary to address these problems. This method uses proactive network traffic monitoring to find possible risks in 

the Internet of Things environment. Our plan is to increase smart environments' awareness of threats and security. Two 

IoT gateways were used to examine the effectiveness and performance of a deep neural network (DNN) model. The 

results were promising: the model caused an average increase of less than 30 kb/s in network bandwidth and a mere 2% 
rise in CPU usage. Additionally, memory and power consumption were minimal, with 0.42 GB and 0.2 GB of memory 

usage for NVIDIA Jetson and Raspberry Pi devices, respectively, and an average 13.5% increase in power consumption 

per device. The machine learning models achieved nearly 93% detection accuracy and a 92% F1 score on the datasets 

used. Our framework demonstrates an effective and efficient method for detecting malware and attacks in Smart 

Environments. 

 

KEYWORDS: IoT, Ecosystem, Network, Cyber Attacks, Machine Learning, Malware and Attacks, IoT security, 

Artificial Neural Network. 

 

I. INTRODUCTION 

 
In the rapidly evolving landscape of the Internet of Things (IoT), the proliferation of smart devices and interconnected 

systems has significantly amplified the complexity of cybersecurity challenges. The sheer volume and diversity of IoT 

devices introduce new vulnerabilities that traditional security measures often fail to address effectively. These 

vulnerabilities, including inadequate encryption, susceptibility to malware, ransomware, and the formation of IoT 

botnets, create opportunities for cybercriminals to exploit and compromise critical systems. As these devices 

increasingly play pivotal roles in various applications, from smart homes and industrial automation to healthcare and 

urban infrastructure, the need for advanced, proactive security solutions becomes ever more pressing [1]. In response to 

these challenges, our study introduces a novel framework that leverages distributed deep neural networks (DNNs) as a 

middleware solution for detecting cyber-attacks within the Smart IoT ecosystem. This innovative approach employs AI-

driven techniques to enhance the detection and prevention of threats across a broad range of scenarios, ensuring robust 

protection for interconnected devices. By implementing this framework, we aim to proactively monitor and analyze 

network traffic, identifying potential security breaches with high accuracy and efficiency. Our approach not only 
addresses the current limitations of conventional cybersecurity practices but also adapts to the dynamic and distributed 

nature of IoT environments. Through rigorous performance evaluation and testing, including deployment on various 

IoT gateways, we assess the framework's effectiveness, focusing on key metrics such as detection accuracy, resource 

consumption, and system impact. The results demonstrate the framework's capability to significantly improve 

cybersecurity in Smart Environments, providing a critical safeguard against evolving threats and ensuring the integrity 

and resilience of interconnected systems. 
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Smart Environments that incorporate IoT infrastructure face a range of cybersecurity challenges. One major issue is the 

difficulty of implementing traditional endpoint protection measures, such as antivirus software, intrusion detection 

systems, and firewalls, in IoT environments where devices are often resource-constrained and require energy-efficient 

solutions. The AT&T Alien Labs™ recently discovered Botena Go malware that exposed millions of IoT devices [2]. A 

group of hackers accessed and controlled thousands of  Verkada security cameras and exposed user credentials publicly 

on the internet [3]. IoT malware attacks in particular increased by 6%, with routers being the most targeted devices [4]. 

Additionally, the need for real-time communication is hindered by the asynchronous nature of many IoT systems, and 
the vast diversity of IoT devices makes it challenging to apply a one-size-fits-all security solution. Existing studies have 

explored the use of AI models for cybersecurity, but many have focused on limited datasets or specific types of attacks. 

To address these gaps, our study proposes a novel framework that leverages AI to detect malware attacks across a wide 

range of IoT devices in Smart Environments. Our approach employs a multi-agent network of AI models, where the 

most computationally intensive models are trained in the Cloud, while less demanding models are trained in Fog/Dew 

environments and deployed on Edge devices. This setup ensures efficient use of resources and effective threat 

detection. Key contributions of our research include: (a) the development of a new method for identifying malware and 

attacks on IoT devices using AI, (b) the ability to monitor live network traffic for real-time threat detection, (c) the 

capability to pinpoint security issues and affected devices, which helps minimize maintenance efforts, and (d) 

performance and concurrency testing that confirms the framework's practicality for real-world deployment in Smart 

Environments. Several existing studies [5–8] have proposed AI models for cybersecurity; however, the majority of 
them have considered only a portion of the dataset or targeted only a few attacks. Therefore, in this study, we have 

proposed an approach with a framework to discover malware attacks on IoT devices using AI-enabled approaches 

covering diverse and distributed scenarios in Smart Environments. In our work, the choice of hardware for setting up 

the IoT network is representative of typical industrial use and is available off the shelf. Our approach will utilize a 

multi-agent network of AI models, where the most cumbersome will be trained in the Cloud environment, and the rest 

can be trained in Fog/Dew and subsequently deployed on Edge devices. The findings suggest that our approach is well-

suited for efficient, in-production implementation, providing robust cybersecurity for diverse and distributed IoT 

ecosystems. 

 

As the Internet of Things (IoT) network systems continue to expand and become more complex, the integration of 

machine learning with IoT has become increasingly prevalent. The shift towards data-driven infrastructure has driven 

research to focus more on machine learning applications within the IoT domain. Today, machine learning techniques 
are applied across various fields, from healthcare—where they assist in interpreting ECGs, detecting diseases through 

X-rays, analyzing genomic patterns, automating cancer detection, and modeling brain signals—to aerospace, where 

they help in defect detection through complex methods like eddy current testing, as demonstrated by D’Angelo et al. 

The growing complexity of IoT systems, however, has introduced significant vulnerabilities. Security breaches and 

anomalies in IoT devices have become common, highlighting the need for enhanced security measures and robust 

detection mechanisms to safeguard these increasingly intricate networks. 

 

II. LITERATURE REVIEW 

 

In this article, we introduce an innovative AI-based middleware and model designed to detect attacks in diverse Smart 

Environments. Our approach involves a four-step process to enhance malware and attack detection through data-driven, 
multi-agent systems. The first step involves collecting network traffic data from various IoT devices, such as Arduino, 

Raspberry Pi, and NVIDIA Jetson devices. In the second phase, we apply various AI and deep learning models to 

classify malware and attacks at multiple levels, focusing on minimizing overhead and latency in the IoT components. 

The third step involves deploying these AI models in different configurations within our local smart environments. 

Finally, the fourth step evaluates the performance and concurrency of the models, measuring their impact on electrical 

power, network bandwidth, and memory usage to assess their efficiency in enhancing IoT cybersecurity. Our 

experimental results, derived from diverse IoT malware and attack datasets, demonstrate that AI can be a highly 

effective tool for safeguarding smart environments against cybersecurity threats [9]. 
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The challenge of detecting sophisticated and persistent botnet attacks on connected IIoT systems is particularly 

complex and critical, given the potentially catastrophic consequences. To address this challenge, our research paper 

introduces AttackNet, a powerful deep learning model designed to detect and classify various botnet attacks in IIoT 

environments. This model utilizes an adaptive CNN-GRU architecture and has been rigorously tested with recent 

datasets and standard performance metrics. AttackNet demonstrates exceptional performance, achieving a testing 

accuracy of 99.75%, a loss of 0.0063, and precision and recall scores of 99.75% and 99.74%, respectively. Notably, our 

model excels within the N_BaIoT dataset, achieving an impressive 99.75% accuracy across ten classes, which 
significantly outperforms existing techniques by 3.2% to 16.07%.  AttackNet surpasses current anomaly detection 

systems in IIoT in terms of accurately identifying and classifying botnet attacks, especially when evaluated on real-time 

IoT device datasets [10]. 

 

Smart Environment is a technology-enabled circumstance that offers better, userfriendly and efficient IoT infrastructure 

with a focus on greener and more sustainable future [11]. Used devices, components, and generated data are subject to 

the user’s needs with sustainability and adaptation as major targets [12,13]. To defend the IoT infrastructure against 

known cyber-attacks, various open-source and commercial software solutions, such as anti-viruses, firewalls, anti-

pattern detection approaches, and security protocols, help to enhance cybersecurity. 

 

Our proposed model is based on a denoising autoencoder, which helps extract features resilient to the heterogeneous 
nature of IoT environments. Experimental results using real-world IoT datasets demonstrate that our framework 

significantly enhances the accuracy of detecting malicious data compared to existing IoT-based anomaly detection 

models. Internet of Things (IoT) systems have become integral to various industries and government services. 

However, these systems are highly vulnerable to security attacks that compromise data integrity and service availability. 

The diversity of data from different IoT devices and the disturbances within these systems make it more difficult to 

detect anomalies and compromised nodes compared to traditional IT networks. Consequently, there is an urgent need 

for effective and reliable anomaly detection to ensure that malicious data is identified and excluded from IoT-driven 

decision support systems. The demand for internet data traffic is rapidly increasing for different data-driven Smart 

Environment applications. The network traffic predictions focus on anticipating future traffic, utilizing previous traffic 

data [14]. Using IoT malware network traffic data, Bendiab et al. [15] proposed an AI-enabled detection approach at the 

package level, reducing the time of detection using deep learning methods. Their network data consist of 1000 pcap 

files of normal and malware traffic collected from different network traffic sources. 
 

Types of attacks and anomalies such as Denial of Service, Data Type Probing, Malicious Control, Malicious Operation, 

Scanning, Spying, and Incorrect Configuration can lead to significant failures in IoT systems. This paper evaluates and 

compares the performance of several machine learning models for accurately detecting these attacks and anomalies in 

IoT systems. The machine learning algorithms considered include Logistic Regression (LR), Support Vector Machine 

(SVM), Decision Tree (DT), Random Forest (RF), and Artificial Neural Network (ANN). The models are assessed 

using various performance metrics, including accuracy, precision, recall, F1 score, and the area under the Receiver 

Operating Characteristic Curve. The results show that Decision Tree, Random Forest, and ANN models each achieved a 

test accuracy of 99.4%. While these models have the same accuracy, the Random Forest model demonstrated superior 

performance based on other evaluation metrics. 

 
A general IoT ecosystem normally includes IoT nodes, end-point devices with limited computational capabilities (CPU 

MHz) that are used to collect data, send measurements and often work using batteries or solar panels. The IoT gateways 

are portable devices, having the functionality of low-end personal computers (CPU GHz), performing data processing 

and aggregation tasks. Moreover, the devices follow different proprietary and open communication protocols, unique 

data storage standards, operational logic [9], different operating systems, and dependencies. From the cybersecurity 

perspective, data can be protected on the Linux-based IoT gateway using tools available for Unix such as ClamAV 

(Clam AntiVirus) for malicious software detection, encryption available for Linux and RPiDS (Raspberry Pi IDS) [16] 

for an intrusion detection system (IDS). However, the application of such measures on IoT end-nodes is extremely 

limited. There is no OS, yet rather firmware that defines a strict routine of initialization function SETUP() and the 

iterative function LOOP() [17]. The only cybersecurity solution that is available and being tested for AVR is the 
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Arduino Crypto library, designed to protect the information by application of various standard encryption methods [18]. 

Therefore, it is necessary to establish an understanding of what kind of data analytics for security can be run on IoT 

nodes and what should be moved to the IoT gateway for the sake of ensuring primary services availability and data 

protection [19]. Our previous work provides a framework for the data-driven cyberattack prediction method using 

several intelligent methods. The method analyzes the complexity of power consumption and bandwidth in deploying AI 

models to IoT devices. 

 

III. METHODOLOGY 

 

The methodology consists of several key stages designed to ensure comprehensive and effective threat detection. 

Initially, we set up a diverse array of IoT devices, including sensors, actuators, and gateways, across a simulated Smart 

Environment to generate a wide range of network traffic data. This data is crucial for training and evaluating our deep 

learning models. The core of our framework involves a multi-agent system where different components of the deep 

neural network (DNN) are trained and deployed across various network layers. We use a distributed approach, with the 

most computationally intensive models being trained in a cloud environment, while lighter models are trained in 

Fog/Dew environments and deployed on Edge devices. This distribution leverages the strengths of each environment—

cloud for heavy processing, Fog/Dew for intermediate tasks, and Edge devices for real-time, localized processing. Our 

methodology begins with data aggregation, where we collect multi-level network traffic data from IoT devices across 
different scenarios, including normal operations and various attack vectors. The collected data undergoes preprocessing 

to handle issues like noise and missing values, ensuring that the dataset is clean and representative. Next, we apply 

advanced deep learning techniques to train the DNN models. This includes using convolutional neural networks 

(CNNs) for feature extraction and recurrent neural networks (RNNs), specifically gated recurrent units (GRUs), for 

capturing temporal patterns in the data. The trained models are then deployed in a distributed manner: the cloud 

environment handles the bulk of model training and updates, while the Fog/Dew environments and Edge devices use 

these models to perform real-time monitoring and attack detection. To validate the effectiveness of our framework, we 

perform extensive performance and concurrency testing. This involves evaluating metrics such as detection accuracy, 

false positives, false negatives, and system resource usage, including network bandwidth, CPU and memory 

consumption, and power usage. We also test the framework’s scalability and robustness under different network loads 

and attack scenarios to ensure it can handle real-world conditions. The final step includes deploying the models in 

operational environments to observe their performance in live settings, making adjustments as necessary to improve 
accuracy and efficiency.  

 

The overall framework consists of several distinct processes, as illustrated in Fig. 1. The first step involves dataset 

collection and observation, where the dataset is carefully gathered and examined to identify the types of data present. 

Following this, data preprocessing is carried out, which includes several key stages: data cleaning, data visualization, 

feature engineering, and vectorization. These preprocessing steps transform the raw data into feature vectors. 

 

The dataset is divided into training and testing sets using an 80–20 split. The training set is utilized to train various 

machine learning algorithms, while the testing set is reserved for evaluating the final model. The training process 

involves different optimization techniques depending on the classifier used. For instance, Logistic Regression employs 

coordinate descent, while Support Vector Machine (SVM) and Artificial Neural Networks (ANN) use conventional 
gradient descent methods. Decision Trees (DT) and Random Forest (RF) do not require an optimizer as they are non-

parametric models. Once the models are trained, the final model is assessed using the testing set and evaluated with 

various performance metrics to determine its effectiveness. 
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Table 1: Frequency distribution of considered attacks. 

 

Attacks Frequency 

Count 

% of Total 

Data 

% of 

Anomalous 

Data 

Denial of Service 5780 01.61% 57.70% 

Data Type 

Probing 

342 00.09% 03.41% 

Malicious 

Control 

889 00.24% 08.87% 

Malicious 

Operation 

805 00.22% 08.03% 

Scan 1547 00.43% 15.44% 

Spying 532 00.14% 05.31% 

Wrong Setup 122 00.03% 01.21% 

    

 

IV. RESULTS 

 

In the Data Analysis section, various machine learning techniques were applied to the dataset, and five-fold cross-

validation was performed with each technique. Figures 1(a) and (b) illustrate how the accuracy results stabilized after 

this cross-validation. The findings indicate that Random Forest (RF) and Artificial Neural Network (ANN) achieved the 

highest accuracy for both training and testing. Decision Tree (DT) showed performance similar to RF and ANN during 

training but exhibited greater variability during testing, initially performing poorly before aligning closely with RF and 

ANN in the later folds. Support Vector Machine (SVM) and Logistic Regression (LR) underperformed compared to 

other techniques in training. However, in the first two folds of testing, SVM and LR initially outperformed other 
methods, with Logistic Regression performing the best among them. Nonetheless, their performance declined in the 

final three folds. It provides various evaluation metrics for each technique trained on the dataset. It reveals that DT and 

RF outperformed the other techniques in terms of accuracy, precision, recall, and F1 score, with RF being slightly more 

accurate than ANN. While LR and SVM also performed reasonably well, they did not match the performance of DT, 

RF, or ANN. 

 

The confusion matrices help determine the most optimized technique. The results indicate that RF is the most effective 

method, correctly classifying nearly all classes except Denial of Service (DoS) and Normality. RF misclassified 403 out 

of 1178 DoS samples as Normal and 18 out of 69,571 Normal samples as DoS. DT's confusion matrix is similar to RF’s 

but also misclassified 18 Normal samples as DoS and two as Spying. ANN's performance was comparable to DT, 

misclassifying one more sample than DT. ANN correctly predicted six out of eight labels but misclassified 403 DoS 

samples as Normal and 18 Normal samples as DoS, with additional misclassifications in Spying and Malicious Control. 
LR and SVM performed poorly overall. LR misclassified numerous samples across various categories, including all 

remaining DoS samples as Normal. SVM also struggled, misclassifying data from several categories as Normal, with 

notable misclassifications in DoS and other classes. 
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Fig. 1.  (a) Training accuracy for different techniques for 5 fold cross validation (b) Testing accuracy for different 

techniques for 5 fold cross validation. 
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Finally, Fig. 2 displays the Receiver Operating Characteristic (ROC) Curves for LR, SVM, DT, RF, and ANN. The area 

under the ROC curve for DT, RF, and ANN approaches one, indicating high accuracy. In contrast, LR and SVM only 

achieved a value of one for DoS and Wrong Setup categories. 

 

 
 

Fig. 2.  ROC Curve of (a) Logistic Regression (b) Support Vector Machine (c) Decision Tree (d) Random Forest 

(e) Artificial Neural Network. 
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V. DISCUSSION 

 

The results highlight significant differences in performance among various machine-learning techniques for detecting 

attacks in IoT systems. The use of five-fold cross-validation provided a robust evaluation of the models, revealing that 

Random Forest (RF) and Artificial Neural Networks (ANN) consistently performed well in both training and testing 

phases. RF and ANN achieved high accuracy, precision, recall, and F1 scores, demonstrating their effectiveness in 

identifying malicious activities and anomalies within IoT environments. 
 

Decision Tree (DT) showed comparable performance to RF and ANN during training, but its performance fluctuated 

during testing. Initially, DT struggled but eventually aligned closely with RF and ANN in the latter folds of cross-

validation. This variability suggests that while DT can be effective, its performance may be more sensitive to the 

specific characteristics of the dataset and the validation process. 

 

Support Vector Machine (SVM) and Logistic Regression (LR) generally lagged behind the other techniques. SVM and 

LR exhibited lower accuracy and other metrics in training, although LR showed better performance than SVM in some 

testing folds. Despite these occasional advantages, both methods ultimately fell short of the performance levels 

achieved by RF and ANN. The confusion matrices further highlight that LR and SVM had significant difficulties in 

accurately classifying various attack types, with numerous misclassifications across different categories. The confusion 
matrices also underscored the strengths and limitations of each model. RF was particularly effective, with only a few 

misclassifications in the DoS and Normality classes. ANN’s performance was close to that of RF but showed slightly 

more misclassifications, particularly in the Normal and DoS categories. DT's performance was similar to RF’s but 

exhibited some inconsistencies in classifying Normal samples. In contrast, LR and SVM had numerous 

misclassifications, reflecting their lower effectiveness in accurately detecting and categorizing attacks. 

 

The ROC curves further corroborated these findings. RF, DT, and ANN achieved high areas under the curve, indicating 

strong performance in distinguishing between classes. However, LR and SVM only achieved optimal performance in a 

limited number of categories, reflecting their overall lower effectiveness in this context. The results suggest that RF and 

ANN are the most suitable techniques for detecting attacks in IoT systems due to their high accuracy and robust 

performance across various metrics. DT also shows promise but with some variability, while LR and SVM are less 

effective, particularly in accurately classifying different types of attacks. These findings provide valuable insights into 
selecting and optimizing machine learning models for cybersecurity applications in IoT environments. 

 

VI. CONCLUSION 

 

The study concluded that the Random Forest (RF) technique is particularly effective for detecting cyberattacks in IoT 

networks when using the dataset analyzed. RF demonstrated superior performance in accurately predicting several 

types of attacks, including Data Probing (D.P), Malicious Control (M.C), Malicious Operation (M.O), Scanning (SC), 

Spying (SP), and Wrong Setup (W.S), outperforming other machine learning methods. It also showed better accuracy in 

predicting Denial of Service (DoS) and Normal samples compared to other techniques. Based on these results, RF is 

deemed the most suitable technique for this specific dataset and problem. However, it's important to note that the study 

only applied traditional machine learning methods and did not introduce any new algorithms. Consequently, further 
research is necessary to develop a more robust detection algorithm and to thoroughly analyze the entire framework. 

Additionally, the study utilized data from a virtual environment, which may not fully capture the complexities of real-

time scenarios. In real-world applications, different issues may arise, such as variations in the behavior of microservices 

over time, leading to anomalies in IoT services. To address these concerns, future research should focus on empirical 

studies using real-time data and explore how different factors might affect the performance of RF and other techniques. 

Although RF achieved an accuracy of 99.4% in this study, its effectiveness in handling larger datasets and addressing 

unforeseen challenges remains uncertain, highlighting the need for continued investigation. 

 

 

 



 

    

ISSN(Online): 2320-9801 

ISSN (Print): 2320-9798 

International Journal of Innovative Research in Computer and 

Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 3, Issue 10, October 2015 

Copyright to IJIRCCE                                                    DOI: 10.15680/IJIRCCE.2015. 0310181                                                    9999 

REFERENCES 

 

1. Augusto, J.C. Past, Present and Future of Ambient Intelligence and Smart Environments. In Proceedings of the 

Agents and Artificial Intelligence; Filipe, J., Fred, A., Sharp, B., Eds.; Springer: Berlin/Heidelberg, Germany, 

2010; pp. 3–15. [CrossRef] 

2. Augusto, J.C.; Nakashima, H.; Aghajan, H. Ambient Intelligence and Smart Environments: A State of the Art. In 

Handbook of Ambient Intelligence and Smart Environments; Nakashima, H., Aghajan, H., Augusto, J.C., Eds.; 
Springer: New York, NY, USA, 2010; pp. 3–31. [CrossRef] 

3. R. Phalnikar, P.A. Khutade, Survey of QoS based web service discovery, in: 2012 World Congress on Information 

and Communication Technologies, IEEE, 2012, pp. 657–661. 

4. C. Pautasso, E. Wilde, RESTful web services: principles, patterns, emerging technologies, in: Proceedings of the 

19th International Conference on World Wide Web, 2010, pp. 1359–1360. 

5. W. Rong, K. Liu, A survey of context aware web service discovery: from user’s perspective, in: 2010 Fifth Ieee 

International Symposium on Service Oriented System Engineering, IEEE, 2010, pp. 15–22. 

6. V.X. Tran, H. Tsuji, A survey and analysis on semantics in QoS for web services, in: 2009 International Conference 

on Advanced Information Networking and Applications, IEEE, 2009, pp. 379–385. 

7. Asuvaran & S. Senthilkumar, “Low delay error correction codes to correct stuck-at defects and soft errors”, 2014 

International Conference on Advances in Engineering and Technology (ICAET), 02-03 May 
2014. doi:10.1109/icaet.2014.7105257. 

8. Aziz A., Hanafi S., and Hassanien A., “Multi-Agent Artificial Immune System for Network Intrusion Detection 

and Classification,” in Proceedings of International Joint Conference SOCO’14-CISIS’14-ICEUTE’14, Bilbao, pp. 

145-154, 2014. 

9. B. Kitchenham, P. Brereton, M. Turner, M. Niazi, S. Linkman, R. Pretorius, D. Budgen, The impact of limited 

search procedures for systematic literature reviews—A participant-observer case study, in: 2009 3rd International 

Sym- posium on Empirical Software Engineering and Measurement, IEEE, 2009, pp. 336–345. 

10. Senthilkumar Selvaraj, “Semi-Analytical Solution for Soliton Propagation In Colloidal Suspension”, International 

Journal of Engineering and Technology, vol, 5, no. 2, pp. 1268-1271, Apr-May 2013. 

11. J. Kopecky`, T. Vitvar, C. Bournez, J. Farrell, Sawsdl: Semantic annotations for wsdl and xml schema, IEEE 

Internet Comput. 11 (6) (2007) 60–67. 

12. A. Renuka Devi, S. Senthilkumar, L. Ramachandran, “Circularly Polarized Dualband Switched-Beam Antenna 
Array for GNSS” International Journal of Advanced Engineering Research and Science, vol. 2, no. 1, pp. 6-9; 

2015. 

13. M. Malaimalavathani, R. Gowri, A survey on semantic web service discovery, in: 2013 International Conference 

on Information Communication and Embedded Systems, ICICES, IEEE, 2013, pp. 222–225. 

14. Aziz A., Salama M., Hassanien A., and Hanafi S., “Detectors Generation Using Genetic Algorithm for A Negative 

Selection Inspired Anomaly Network Intrusion Detection System,” in Proceedings of Federated Conference on 

Ensemble Voting based Intrusion Detection Technique using Negative Selection Algorithm 157 Computer Science 

and Information Systems, Wroclaw, pp. 597-602, 2012. 

 


