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ABSTRACT: Globally, hepatic cancer is the leading cause of cancer-related mortality, emphasizing the importance of 

early detection through computed tomography (CT). Automating CT scan analysis could save millions of lives 

annually, alleviating radiologists' workload. However, developing accurate and efficient systems for CT scan reading, 

detection, and evaluation poses a significant challenge, particularly in segmenting and extracting the liver from CT 

scans. To address this, we adapted a deep learning-based approach, originally designed for semantic segmentation of 

road scenes, to develop Signet, a deep convolutional encoder-decoder architecture. Our modified architecture achieved 

a remarkable tumor detection accuracy of up to 99.9% on a standard liver CT scan dataset during the training phase, 

demonstrating its potential in assisting radiologists in early cancer detection. 
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I. INTRODUCTION 

 
The liver, the body's largest organ, situated beneath the right ribs and inferior to the lung base, performs a vital function 

in the digestive process. It filters blood cells, processes and stores nutrients, converts some of these nutrients into 

energy, and breaks down toxic agents. The liver is composed of four distinct lobes: the left and right main lobes, and 

the smaller quadrate and caudate lobes, which are visible on the organ's undersurface. Hepatocellular carcinoma (HCC) 

can occur when liver cells begin to grow uncontrollably, potentially spreading to other areas of the body. Primary 

hepatic malignancies result from aberrant cellular behavior, leading to liver cancer, which ranks as the second and sixth 

leading cause of cancer-related mortality in men and women, respectively. The global burden of liver cancer is 

significant, with approximately 750,000 new cases diagnosed and 696,000 fatalities reported in 2008 alone. Notably, 

the incidence rate in males is twice that of females, highlighting a significant gender disparity in liver cancer 

prevalence. 

           

 Accurate detection and extraction of cancer regions from CT scans require an automated procedure, which relies on 

image segmentation. This process partitions the liver region into semantic parts, supporting radiologists' diagnoses and 

enabling computer-aided diagnosis (CAD) systems. Currently, CT scan interpretation relies on manual or semi-manual 

techniques, which are subjective, expensive, time-consuming, and prone to errors. Figure 1 illustrates the challenge of 

differentiating the liver and spleen due to similar gray level intensities. To overcome these limitations and improve 

liver tumor diagnosis, various computer-aided methods have been developed. However, they face challenges such as 

low contrast, varying contrast levels, tumor heterogeneity, tissue abnormalities, and irregular growth. Therefore, a 

novel approach is necessary to overcome these obstacles and achieve accurate segmentation of the liver and lesions. 
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Figure 1: Illustration of the challenging gray level intensity similarity between the liver and spleen in computed 

tomography (CT) images, highlighting the need for advanced image processing techniques for accurate segmentation 

and diagnosis. 

 

This review examines a broad range of recent studies on image analysis for liver malignancy segmentation, with a 

focus on supervised learning methods that utilize labeled inputs to train models for specific tasks, such as liver and 

tumor segmentation. Deep learning techniques have emerged as a prominent approach, with various models 

demonstrating excellence, including stacked auto-encoders (SAE), deep belief nets (DBN), convolutional neural 

networks (CNNs), and Deep Boltzmann Machines (DBM) [28–31]. While deep learning models have consistently 

shown superior accuracy, the challenge persists in obtaining large, expertly curated training datasets, highlighting the 

need for high-quality data to unlock the full potential of these models. 

                     

This research utilizes the Signet deep learning model, renowned for its efficacy in image segmentation for scene 

understanding, leveraging its strengths in memory and performance efficiency. Adapted for binary classification tasks, 

this model is applied to segment liver and lesions in CT images. The paper is structured as follows: Section 2 provides 

a review of recent segmentation approaches for liver and lesions in CT images, introducing key concepts. Section 3 

describes the proposed methodology and experimental dataset. Section 4 presents and discusses the experimental 

results, followed by concluding remarks and future directions in the final section. 

 

Basic Concepts: 

Foundational Principles: In recent years, Convolutional Neural Network (CNN) models have become ubiquitous in 

image classification, leveraging feature extraction from convolutional layers before or after downsampling. However, 

existing architectures are ill-suited for image segmentation and pixel-wise classification tasks. The VGG-16 network, a 

variant of CNN, comprises 41 layers, including 16 learnable layers, 13 convolutional layers, and three fully connected 

layers. Figure 2 depicts the VGG-16 architecture, as originally introduced by Simonyan and Zisserman, highlighting its 

robustness in image classification 
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The majority of pixel-wise classification networks adopt an encoder-decoder architecture, where the encoder 

component is typically based on the VGG-16 model. The encoder progressively reduces the spatial dimensions of 

images through pooling layers, while the decoder recovers object details and spatial dimensions, enabling rapid and 

accurate image segmentation. Building on this framework, Badrinarayanan et al. proposed SegNet, a deep encoder-

decoder network for scene understanding applications, successfully demonstrated on road and indoor scenes. The core 

segmentation engine comprises an encoder network, decoder network, and pixel-wise classification layer. The encoder 

network mirrors the initial 13 convolutional layers of VGG-16, while the decoder network maps low-resolution feature 

maps to full-input resolution feature maps for pixel-wise classification. Figure 3 illustrates the SegNet model, 

showcasing the down-sampling process in the encoder part, where instead of transferring pixel values, the indices of 

selected pixels are stored and synchronized with the decoder for up-sampling. Notably, SegNet features additional 

shortcut connections, enhancing its segmentation capabilities. 

 

 
 

II. MATERIALS AND METHOD 
 

Dataset:   
The 3D-IRCADb-01 database constitutes our dataset, comprising three-dimensional Computed Tomography (CT) 

scans of 20 diverse patients (10 female and 10 male), with 15 cases presenting hepatic tumors. Each image has a 

resolution of 512 x 512 pixels, with a variable depth ranging from 74 to 260 slices per patient. The dataset includes 

patient images in DICOM format, accompanied by labeled images and mask images, serving as ground truth for the 

segmentation process. 

 

Image Preprocessing: The 3D-IRCADb-01 database consists of 20 diverse patient cases (10 female and 10 male), 

featuring three-dimensional Computed Tomography (CT) scans with hepatic tumors present in 15 instances. Each 

image has a resolution of 512 × 512 pixels, with a variable depth ranging from 74 to 260 slices per patient. The dataset 

includes patient images in DICOM format, accompanied by labeled images and mask images serving as ground truth 

for segmentation. Cournand segmentation [48] identifies the tumor locations. To facilitate image processing, a color 

depth conversion is necessary, mapping pixel values to positive 1-byte integers using the following formula: This 

conversion enables proper image display and processing. 

 

g = h m1 m2 m1 255 𝑔 = ℎ−𝑚1 𝑚2 −𝑚1 ∗ 255 (1) 

 

 Where h is the pixel value in Hounsfield, g is the corresponding predicted gray level value, and m1 and m2 are the 

minimum and maximum of the Hounsfield range, respectively. 
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Figure 4. Raw CT slices in DICOM format for three different patients imported from the IRCAD dataset. 

 

III. EXPERIMENTAL RESULTS 
 

The classification output was compared to the ground truth provided by the dataset on a pixel-to-pixel basis. The results 

were evaluated using the following metrics, with Table 1 displaying the confusion matrix for binary class classification: 

 

- Accuracy 

- Precision 

- Recall 

- F1-score 

- Intersection over Union (IoU) 

 

This evaluation framework enables a comprehensive assessment of the classification model's performance. 

 

 
 
1. Overall Accuracy: The accuracy metric represents the proportion of correctly classified pixels to the total number of 

pixels, mathematically expressed as: 

 

 
 
2. Recall (Re) or true positive rate (TPR): The recall metric, also known as sensitivity, represents the system's ability 

to accurately detect tumor pixels, calculated as the ratio of true positives (TP) to the sum of true positives and false 

negatives (FN), as expressed: 
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3. Specificity of the true negative rate (TNR): The specificity metric represents the system's accuracy in identifying 

background or normal tissue, calculated as the ratio of true negatives (TN) to the sum of true negatives and false 

positives (FP), as expressed in Equation (4): 

 
 
4. Intersection over union (IoU): The Intersection over Union (IoU) metric measures the accuracy of pixel 

classification, calculating the ratio of correctly classified pixels to the union of predicted and actual pixels for the same 

class. Expressed as: 

 
 

 
5. Precision (Pr): The precision metric evaluates the reliability of predicted tumor classifications, measuring the trust 

in the predicted positive class. It is defined as the ratio of true positives to the sum of true positives and false positives, 

as expressed in Equation (6): 

 
 
6. F1 score (F1): this is a harmonic mean of recall (true positive rate) and precision, as formulated in Equation (7). It 

measures whether a point on the predicted boundary has a match on the ground truth boundary or not: 

 

 
 

IV. DATA SET AND PREPROCESSING 
 

The preprocessing procedure, described earlier, was applied uniformly to all image slices. Notably, the labeled images 

provided in the dataset, already in binary form with values ranging from 0 to 255, were exempt from the range mapping 

step. Figures 5 and 6 illustrate the preprocessing steps performed on the input images. These input images are 

accompanied by corresponding labeled images, expertly annotated and utilized as ground truth for the segmentation 

process, enabling the system to learn from accurate classifications. 

 

 
 

Figure 5. Samples of the slices after color range mapping to [0, 255]. 
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Figure 6. Liver tumor labeled images from the ground truth given by the dataset. 

 

Training and Classification: 
The dataset was divided into training, validation, and testing sets, comprising 454 images (training and validation) and 

45 images (testing) from three cases. Initially, the U-Net model [45] was employed for semantic segmentation, 

leveraging the VGG-16 architecture. While the model excelled in extracting the liver region with near-perfect results, it 

failed to accurately segment tumor regions, often misclassifying or entirely missing them. These findings highlighted 

the need for further refinement in tumor segmentation. 

 
 

Figure 7. The proposed architecture. 

 

Testing and Evaluation: 
The images from the tested cases were randomly split into training and testing sets in a 9:1 ratio. As expected, the 

training results outperformed the testing outcomes. Figure 8 displays three examples of testing output, where the 

resulting binary segmentation is superimposed on the input gray-level images, demonstrating nearly flawless 

segmentation achievements at this stage. 
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Figure 8. Samples of the results of testing. 

 

 
 

In the testing phase, the model generates semantic segmentation results for the input image, providing classification 

scores for each categorical label. Figure 9 illustrates the evaluation methodology, where the resulting segmented images 

are overlaid on the ground truth image, enabling a visual comparison between the predicted and actual segmentations. 

 

 
 

Figure 9. Samples of the resulting segmented image superimposed over the ground truth image. 

 

The experimental results for test cases 1, 2, and 3 are presented in the form of confusion matrices in Tables 3, 4, and 5,  

respectively. 
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To provide a broader context and facilitate comparison, Table 6 presents a summary of the overall accuracy of the 

proposed method alongside selected works from the literature, as reported in their respective papers. This comparison 

aims to enhance the understanding of the presented results and highlight the relative performance of the proposed 

approach. 

 

 
 

V. CONCLUSIONS 
 
1. This study explores the adaptation of a deep learning model, originally designed for semantic segmentation of road 

scenes, for tumor segmentation in CT liver scans in DICOM format. The Signet architecture, a recent encoder-

decoder network, leverages the pre-trained VGG-16 image classification network as the encoder and a 
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corresponding decoder to achieve pixel-wise classification. Signet's innovative approach efficiently modifies the 

traditional auto-encoder design by storing max-pooling indices instead of full feature maps, resulting in enhanced 

training speed, reduced memory requirements, and improved accuracy. For binary medical image segmentation, 

the classification layer was modified to perform binary pixel classification.  
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