

 Volume 12, Issue 10, October 2024

Impact Factor: 8.625

© 2024 IJIRCCE | Volume 12, Issue 10, October 2024| DOI: 10.15680/IJIRCCE.2024.1210064

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 11886

Development of a Real-Time Chat Application

Raj Adhav, Pratik Gulve, Tanmay Chaudhari, Samruddhi Patil, Prof.Arati Kothari

Department of Computer Engineering, Ajeenkya Dy Patil University, Pune, India

ABSTRACT: This paper presents the development of a real-time chat application using JavaScript, Express.js, and

RESTful services. The application is designed as a Single Page Application (SPA) with a focus on user authentication,

session management, and real-time communication. Utilizing a RESTful API to manage chat messages and user

sessions, the system provides a seamless experience through periodic client polling. Key considerations include
security measures like input sanitization and session handling, which ensure secure communication between clients and

the server.

KEYWORDS: RESTful services, Single Page Application, JavaScript, Express, User Authentication, Real-time Chat,

Session Management

I. INTRODUCTION

The increasing need for seamless and efficient communication tools has driven the evolution of web-based chat

applications. These applications facilitate real-time interaction, providing users with the ability to exchange messages

instantly. Single Page Applications (SPAs) have emerged as a popular choice for building such tools due to their ability

to deliver dynamic content without requiring full page reloads, thus offering a smoother user experience. This paper

presents the design and development of a real-time chat application using JavaScript for the front-end and Express.js

for building RESTful services on the server side. The application focuses on implementing secure user authentication,

maintaining persistent sessions, and ensuring effective client-server communication. By utilizing RESTful APIs and a

polling mechanism for updates, the system achieves a responsive chat experience that adapts to the needs of multiple

simultaneous users. This project demonstrates how modern web technologies can be leveraged to create user-friendly,

scalable, and secure communication platforms.

II. SYSTEM ARCHITECTURE

1. Overview
The chat application is based on a client-server architecture where the front-end SPA communicates with the back-end

server using RESTful APIs. The server, developed with Express.js, serves static assets and provides endpoints for

managing user sessions, messages, and authentication. The client side, built using JavaScript, renders updates

dynamically without reloading the page.

2. RESTful API Design
The RESTful API is designed following standard principles to ensure stateless communication between the client and

server. Key endpoints include:
1. POST /api/v1/session: Creates a user session upon login.

2. GET /api/v1/messages: Retrieves messages for logged-in users.

3. POST /api/v1/messages: Allows users to send messages.

4. GET /api/v1/users: Returns a list of currently logged-in users.

3. Authentication and Session Management
User authentication does not require passwords; instead, users receive a session identifier (sid) upon login. The SPA

checks for an active session on page load to avoid repeated logins. All requests requiring authorization include the sid,

ensuring that only authenticated users can access protected resources.

User "dog" is explicitly blocked as a demonstration of role-based access control.

© 2024 IJIRCCE | Volume 12, Issue 10, October 2024| DOI: 10.15680/IJIRCCE.2024.1210064

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 11887

III. METHODOLOGY

1. Front-End Development
The SPA is built using HTML, CSS, and JavaScript. It features a login form, a chat window to display messages, and a

user list. JavaScript is used to manage user interactions, fetch data from the server, and update the DOM. Responsive

design principles are applied to ensure usability across different screen sizes, with attention to avoiding horizontal

scrolling and ensuring readability.

2. Back-End Development
The server is implemented using Node.js with Express.js, following RESTful principles. It manages persistent state

through in-memory storage, holding details of logged-in users and their messages. Service endpoints are designed to

interact with the SPA using JSON for both requests and responses.

3. Polling for Updates
To provide a near real-time experience, the client-side application polls the server every 5 seconds for updates on new

messages and logged-in users. This method allows the SPA to render updates without reloading the input form,

preserving user input during active sessions.

4. Security Considerations
The project incorporates several security measures:

Input Sanitization: Usernames are sanitized using a whitelist approach to prevent unauthorized input.

Session Management: Sessions are tracked using cookies, and all API requests are validated with session identifiers.

Authorization: Service endpoints ensure that only authenticated users can access chat data, returning wait for time δt
and collects all the packets. After time δt it calls the optimization function to select the path and send RREP.
Optimization function uses the individual node’s battery energy; if node is having low energy level then optimization
function will not use that node.

IV. RESULTS AND DISCUSSION

1. User Experience
The application successfully maintains a smooth user experience by eliminating page reloads and providing instant

updates. Users can easily login, view messages, and interact with other users. The design of the SPA allows multiple

sessions for the same user across different devices, ensuring flexibility in usage.

2. Performance and Scalability
While the current implementation relies on client-side polling for updates, the architecture allows for potential scaling

by optimizing the polling interval or introducing WebSockets for real-time communication.

The use of Express.js enables the server to handle multiple simultaneous requests efficiently.

3. Security and Session Management
The application effectively demonstrates session-based authentication and state management. Blocking the user "dog"

as a demonstration of access control shows the flexibility of the system. Although the app does not sanitize chat

messages, it outlines strategies for preventing common vulnerabilities such as cross-site scripting (XSS).

4. User Feedback and Usability Testing
Usability testing with a small group indicated that the application’s interface is intuitive, with clear separation between
chat messages and the active user list. Users appreciated the real-time updates and the ability to maintain sessions

across multiple devices. Suggestions included adding features like message notifications and a "typing..." indicator for

better interactivity, which could further improve user engagement.

5. Limitations
The application currently relies on client-side polling, which is suitable for small user bases but could become
inefficient as user numbers grow. Additionally, the lack of a persistent database means that chat history is lost if the

© 2024 IJIRCCE | Volume 12, Issue 10, October 2024| DOI: 10.15680/IJIRCCE.2024.1210064

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 11888

server restarts, limiting the application’s usefulness in scenarios requiring long-term message storage. Future

enhancements like WebSocket integration and database support could address these issues.

6.

Fig 1. USER LOGIN INTERFACE

7.

Fig 2. CHAT INTERFACE

V. CONCLUSION

This research paper presented the design and development of a real-time chat application using JavaScript and RESTful
services with a focus on creating a secure and scalable Single Page Application (SPA). By utilizing Express.js for the

back-end, the application implemented user authentication, session management, and a polling mechanism to facilitate

real-time updates. The SPA architecture ensured a smooth user experience, allowing seamless interactions without page

reloads.

The project successfully demonstrated how modern web technologies can be leveraged to create a responsive

communication platform, providing users with instant messaging capabilities and real-time updates. Although the

current implementation relies on a simple polling mechanism, the application lays a solid foundation for future

enhancements such as WebSocket integration and advanced security measures.

© 2024 IJIRCCE | Volume 12, Issue 10, October 2024| DOI: 10.15680/IJIRCCE.2024.1210064

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 11889

Overall, this chat application serves as a practical example of building efficient client-server interactions using

RESTful APIs. It highlights the importance of maintaining a balance between usability, security, and performance in

web application development. The insights gained from this project can be applied to other real-time communication

systems, making this research valuable for developers and researchers working in the field of web-based

communication.

VI. FUTURE SCOPE

The chat application developed in this project provides a foundation for further enhancements and scalability. Potential

areas for future development include:

WebSocket Integration:
Transitioning from a polling mechanism to WebSocket-based communication can significantly improve real-time

performance and reduce server load. WebSockets enable full-duplex communication, allowing the server to push

updates directly to clients as they occur, making the chat experience more responsive, especially with a larger user base.

Advanced Security Features:
Future iterations can include more robust security measures such as implementing HTTPS for secure data transmission,
adding CSRF (Cross-Site Request Forgery) protection, and employing more advanced input sanitization techniques to

guard against XSS (Cross-Site Scripting) attacks.

User Management Enhancements:
The application can be extended to support more detailed user profiles, status indicators (such as “online,” “offline,” or
“typing”), and enhanced session management features, like session expiration and activity tracking.

Scalability with Cloud Deployment
Deploying the chat application on cloud platforms like AWS, Azure, or Google Cloud can allow for scaling to support

a higher number of concurrent users. Using services like AWS Lambda, DynamoDB, or managed container services

can also optimize the back-end's performance and reliability.

Mobile Application Development:
Developing a mobile version of the chat application using frameworks like React Native or Flutter would make it

accessible on smartphones and tablets, thus expanding the user base and offering a seamless cross-platform experience.

Artificial Intelligence for Chat Moderation:
Integrating AI and natural language processing (NLP) techniques for content filtering and automated moderation can

help maintain a safe environment within the chat. Features like sentiment analysis and spam detection could improve

user engagement by reducing harmful or unwanted content.

Customizable User Interfaces:
Offering users the ability to customize the chat interface, such as changing themes or organizing chat layouts, can
enhance user experience and make the application more attractive to different user demographics.

Integration with Third-Party Services:
The chat application can be integrated with third-party services like cloud storage for saving chat history or social

media platforms for user authentication. This would enhance the application's versatility and usability in various

scenarios, such as corporate communication tools or customer support systems.

ACKNOWLEDGMENT

The author would like to express sincere gratitude to Ms. Arati Kothari, for her invaluable guidance, support, and

encouragement throughout the course of this project. Her expertise and insights were instrumental in shaping the

direction and successful completion of this project.

© 2024 IJIRCCE | Volume 12, Issue 10, October 2024| DOI: 10.15680/IJIRCCE.2024.1210064

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 11890

REFERENCES

1. R. T. Fielding, "Architectural Styles and the Design of Network-based Software Architectures," Doctoral

Dissertation, University of California, Irvine, 2000.

2. Express.js Documentation, "Express - Node.js web application framework," available at: https://expressjs.com/.

3. D. Flanagan, JavaScript: The Definitive Guide, 7th ed. Sebastopol, CA: O'Reilly Media, 2020.

4. MDN Web Docs, "Using Fetch," available at: https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API.
5. L. Richardson and S. Ruby, RESTful Web Services, 1st ed. Sebastopol, CA: O'Reilly Media, 2007.

6. S. Newman, Building Microservices, 2nd ed. Sebastopol, CA: O'Reilly Media, 2021.

7. S. Stefanov, JavaScript Patterns, 1st ed. Sebastopol, CA: O'Reilly Media, 2010.

8. A. Kant, Express.js Guide, Leanpub, 2013, available at: https://leanpub.com/expressjs.

9. OWASP Foundation, "OWASP Top 10 Web Application Security Risks," 2021, available at:

https://owasp.org/www-project-top-ten/.

10. E. Rescorla, HTTP over TLS. IETF RFC 2818, 2000, available at: https://datatracker.ietf.org/doc/html/rfc2818.

11. D. Crockford, JavaScript: The Good Parts. O'Reilly Media, 2008.

12. M. Casciaro and L. Mammino, Node.js Design Patterns, 3rd ed. Packt Publishing, 2020.

13. D. Herman, Effective JavaScript: 68 Specific Ways to Harness the Power of JavaScript. Addison-Wesley

Professional, 2012.
14. K. C. Louv, "RESTful Services Best Practices for JavaScript and Node.js Developers," International Journal of

Web Services Research, vol. 14, no. 2, pp. 23-36, 2017.

15. J. Garrett, "Ajax: A New Approach to Web Applications," Adaptive Path, 2005, available

http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/.

16. S. S. Shirinivas, "Comparison of HTTP Polling, Long-Polling, and WebSockets for Real-time Communication,"

International Journal of Computer Applications, vol. 174, no. 1, 2017.

17. E. Katz-Bassett, C. Scott, D. R. Choffnes, et al., "Evaluating WebSocket Protocol for Real-time Web Applications,"

IEEE Communications Surveys & Tutorials, vol. 18, no. 4, pp. 312-325, 2016.

18. R. N. Taylor, "RESTful Web Services and Microservices: Architecture and Implementation," Software Engineering

Notes, vol. 43, no. 3, pp. 56-66, May 2018.

19. A. Holovaty and J. Kaplan-Moss, The Definitive Guide to Django: Web Development Done Right, Apress, 2009.

(Relevant for understanding back-end frameworks and how they contrast with Express.js).
20. D. Crockford, JavaScript: The Good Parts. O'Reilly Media, 2008.

21. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1994.

22. M. Cantelon, M. Harter, T. Holowaychuk, and N. Rajlich, Node.js in Action, 2nd ed., Manning Publications, 2017.

23. E. A. Satterthwaite and B. Burke, Building Web Applications with Express.js. Packt Publishing, 2014.

24. K. Simpson, You Don’t Know JS: Async & Performance. O'Reilly Media, 2015.
25. G. Lawton, "Developing RESTful Web Services with Node.js and Express," IEEE Internet Computing, vol. 22, no.

4, pp. 94-99, July 2018.

26. L. Richardson and M. Amundsen, RESTful Web APIs. O'Reilly Media, 2013.

27. E. Rescorla and N. Modadugu, Datagram Transport Layer Security Version 1.3, IETF RFC 9147, 2021. Available

at: https://datatracker.ietf.org/doc/html/rfc9147
28. J. Flanders, ASP.NET Web API: Build RESTful Web Applications and Services on the .NET Framework. O'Reilly

Media, 2013.

29. P. Hintjens, ZeroMQ: Messaging for Many Applications. O'Reilly Media, 2013.

30. A. Banks and E. Porcello, Learning React: Functional Web Development with React and Redux, 2nd ed., O'Reilly

Media, 2020.

31. S. Burd, Systems Architecture, 7th ed., Cengage Learning, 2019.

32. M. Bostock, "D3.js: Data-Driven Documents," IEEE Trans. Visualization and Computer Graphics, vol. 17, no. 12,

pp. 2301-2309, 2011.

33. M. Fowler and K. Beck, Refactoring: Improving the Design of Existing Code, 2nd ed., Addison-Wesley, 2018.

34. OWASP Foundation, OWASP Secure Coding Practices Quick Reference Guide, v2, 2010. Available at:

https://owasp.org

35. A. Holovaty and J. Kaplan-Moss, The Definitive Guide to Django: Web Development Done Right, Apress, 2009.

https://expressjs.com/
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://owasp.org/www-project-top-ten/
https://datatracker.ietf.org/doc/html/rfc9147
https://owasp.org/

© 2024 IJIRCCE | Volume 12, Issue 10, October 2024| DOI: 10.15680/IJIRCCE.2024.1210064

IJIRCCE©2024 | An ISO 9001:2008 Certified Journal | 11891

36. M. Zammetti, Modern Full-Stack Development: Using TypeScript, React, Node.js, Webpack, and Docker. Apress,

2020.

37. C. Hartmann and C. Stehle, "Single Page Application Development with Angular and RESTful APIs," International

Journal of Web Engineering, vol. 11, no. 4, pp. 303-310, 2019.

38. F. Vogel, "Building Scalable Web Apps with WebSockets," IEEE Software, vol. 29, no. 5, pp. 72-79, Sept. 2017.

39. G. Ghirardini, Practical Node.js: Building Real-World Scalable Web Apps. Apress, 2016.

40. M. Fowler, Patterns of Enterprise Application Architecture. Addison-Wesley Professional, 2002.
41. T. O'Reilly, "What Is Web 2.0: Design Patterns and Business Models for the Next Generation of Software,"

Communications & Strategies, no. 65, pp. 17-37, 2007.

42. K. C. Louv, "Building Scalable Web Applications with RESTful Services," Journal of Web Development, vol. 13,

no. 3, pp. 45-59, 2018.

43. E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.2, IETF RFC 5246, 2008. Available at:

https://tools.ietf.org/html/rfc5246

44. P. Saint-Andre, Extensible Messaging and Presence Protocol (XMPP): Core, IETF RFC 6120, 2011. Available at:

https://tools.ietf.org/html/rfc6120

45. J. Axford, Real-Time Web Apps with WebSockets: Design, Implementation, and Security, Packt Publishing, 2017.

46. M. Bostock, "D3.js: Data-Driven Documents," IEEE Trans. Visualization and Computer Graphics, vol. 17, no. 12,

pp. 2301-2309, 2011.
47. F. C. Johnson and G. C. Dunlap, "Optimizing JavaScript Performance in Real-time Web Applications," IEEE

Internet Computing, vol. 20, no. 5, pp. 32-39, Sept. 2016.

48. R. Nixon, Learning PHP, MySQL & JavaScript with jQuery, CSS & HTML5, 5th ed., O'Reilly Media, 2018.

49. P. Hintjens, ZeroMQ: Messaging for Many Applications. O'Reilly Media, 2013.

50. D. Flanagan, JavaScript: The Definitive Guide, 6th ed., O'Reilly Media, 2011.

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6120

 8.379

	ABSTRACT: This paper presents the development of a real-time chat application using JavaScript, Express.js, and RESTful services. The application is designed as a Single Page Application (SPA) with a focus on user authentication, session management, a...
	KEYWORDS: RESTful services, Single Page Application, JavaScript, Express, User Authentication, Real-time Chat, Session Management
	2. RESTful API Design

