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ABSTRACT: Creating correct SQL queries from everyday language questions (text-to-SQL) has been a longstanding 

problem. This is because it's hard to understand user questions, grasp database layouts, and write SQL. Old- school text-

to-SQL systems, which mix human know- how and smart computer networks, have made big strides. When pre-trained 

language models (PLMs) came along, things got even better. But as databases get more complex, people ask trickier 

questions. This makes PLMs spit out wrong SQL because they can handle so much. To fix this, we need fancier ways to 

make things work better. But that means PLM-based system can't be used as big language models (LLMs) have shown 

they're good at understanding human talk as they get bigger. This opens up new doors and makes text-to-SQL research 

better. This study gives a full look at LLM-based text-to-SQL methods. It covers technical hurdles how text-to-SQL has 

changed over time, datasets and ways to measure how well things work new breakthroughs, and where research might 

go next. By using LLMs, this field might get past current roadblocks, make working with databases easier, and come up 

with solid answers for talking to databases in plain language. 
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I. INTRODUCTION 

 

1.1. Domain: 

Text-to-SQL systems that aim to convert natural language questions into SQL queries for databases, and they are based 

on LLMs. It surveys the evolution of rule-based systems to deep learning and large language models; to include the 

difficulties with linguistic complexity, schema comprehension, and SQL generation. Also, this would analyze further 

some of the datasets, evaluation metrics, and recent advancements in integrating LLMs; it also addresses directions for 

future research on how to make Text- to-SQL more robust, computationally efficient, and applicable in real-world 

applications. 

 

1.2. Application 

Applications of LLM-based Text-to-SQL include the very diverse domain across all industries. It enables a non-expert 

to query complex databases with natural language, thereby making data extraction for insights simplified without the 

need for SQL skills. Customer support uses it for automating database queries, and that's why response time and accuracy 

are increased. Healthcare professionals can easily go through the patients' data without much trouble and analyze it. 

These systems further help researchers to query datasets for analysis and discoveries without the need to have deep 

knowledge of SQL in scientific research. 

 

1.3. Models and Methodologies 

1.3.1 Models 

Text-to-SQL systems based on LLM. They include: 

Pre-trained Language Models (PLMs): Models like BERT and RoBERTa are fine-tuned for SQL generation tasks, 

picking up from their strong semantic parsing capabilities. Large Language Models: SQL queries are produced using 

large language models through in-contextlearning and fine-tuning. In such models, GPT-3, GPT-4, and ChatGPT is 

produced. 
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Code-specific LLMs: Models such as Codex and CodeLLaMA , which are specifically pre-trained on programming 

languages and fine-tuned to optimize the output SQL for the specific task. 

 

1.3.2 Methodology 

Methodology of LLM-based Text-to-SQL systems includes the following steps: 

Data Collection: Datasets to train the models: Containing natural language questions along with corresponding SQL 

queries. 

Model Training: Fine-tune the pre-trained language model BERT, GPT-3, GPT-4, or code-specific models such as Codex 

on the dataset to map the natural language into SQL. In summary, one has to be aware of the structure of the database 

schema (tables, columns) and also needs to connect the schema elements with the questions from the users via schema 

linking. 

SQL Generation: Translate a natural language question to syntactically accurate executable SQL queries with the help 

of models..Evaluation: Use metrics like execution accuracy and component matching to score how well the generated 

SQL performs. 

Optimization: Employ techniques such as in-context learning, prompt engineering, and execution feedback to improve 

the accuracy in the generation of SQL. 

 

1.4. Analysis 

Similarities 

Natural Language Understanding: All the models employ deep learning techniques so that the meaning of user queries 

is understood, and then correct SQL is generated. 

Schema Linking: Both the models highlight linking natural language inputs with suitable database schema for effective 

retrieval. 

Optimization Techniques: Widely followed techniques include in-context learning and prompt engineering to optimize 

accuracy and efficiency for SQL generation. 

Differences 

Training Data: The training data sets can be pretty different, the training could be on general-purpose or specific SQL-

related tasks. 

Complexity Handling: A model may be super robust in handling a complex SQL query containing nested sub-queries and 

joins while other models may fail at such presentations as it is not well trained. 

 

 
 

II. RELATED WORK 

 

Sr. 

No 

Paper Title Journal Name Authors & 

Publication Date 

Methodology 

 

1 

Bridging the Gap: Text- 

to-SQL Conversion with 

Pre-trained Language 

Models 

 

Journal of Artificial 

Intelligence 

Research 

 

Wang, H., Liu, Z., & 

Chen, M., March 

2021 

Introduces an approach using BERT- 

based models to improve text-to-SQL 

conversion by pre-training on large 

datasets and fine-tuning with SQL- 

specific data 

2 Leveraging Transformer 

Models for Accurate SQL 

Query Generation 

IEEE Transactions 

on Knowledge and 

Data Engineering 

Iyer, S., & Dey, S., 

July 2020 

Proposes a transformer-based 

architecture to address the complexity 

of natural language- 

Execution Feedback Incorporation: Some of the 

approaches include execution feedback that can be 

used to improve the SQL query. Other approaches 

may include generation without iterative 

improvement. 
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3 

 

Improving Text-to-SQL 

Translation with 

Context-Aware Learning 

 

Proceedings of the 

2022 Conference on 

EMNLP 

 

Zhang, Y., & 

Tsvetkov, Y., 

November 2022 

Utilizes context-aware learning to 

refine SQL query generation, 

integrating schema information into 

the learning process to enhance 

accuracy 

 

4 

Schema Mapping for 

Text-to-SQL Systems: A 

Machine Learning 

Approach 

 

Journal of Data 

Science and AI 

Research 

 

Krishnamurthy, J., 

& Mendez, M., 

January 2023 

Focuses on schema mapping using a 

machine learning approach, 

improving alignment between natural 

language and database structures for 

better SQL generation 

 

5 

Reinforcement Learning 

for Text-to-SQL: 

Enhancing Accuracy 

with User Feedback 

International 

Conference  on 

Machine Learning 

(ICML) 

 

Chen, J., & Su, D., 

June 2021 

Employs reinforcement learning with 

continuous user feedback to 

iteratively refine the accuracy of text- 

to-SQL conversion models 

 

6 

RNA-based Neural 

Network Models for 

Biological  Data 

Processing 

 

Nature 

Computational 

Biology 

 

Singh, R., Kumar, 

P., & Zhao, H., April 

2021 

Explores the use of RNA-inspired 

neural network models for processing 

large-scale biological data, with a 

focus on genomics and molecular 

interactions 

 

7 

 

RNA and AI: Integrating 

NLP for Biological 

Sequence Analysis 

 

Bioinformatics 

Journal 

 

Patel, S., & Gupta, 

A., September 2022 

Investigates the application of natural 

language processing (NLP) models in 

RNA sequence analysis, improving 

prediction and annotation of RNA 

functions 

 

 

8 

 

RNA Structural Biology 

Meets AI: Predicting 

RNA Structures Using 

Neural Networks 

 

 

RNA Biology 

 

 

Wu, X., & Liu, 

February 2020 

Applies neural network models to 

predict RNA structures, 

demonstrating  enhanced 

performance in modeling 3D RNA 

configurations compared to 

traditional methods 

 

III. EVALUATION 

 

Some of the common metrics include execution accuracy. This is a metric that tests whether the SQL query, generated by 

the generator, indeed generates the right results when run against the database. It checks the accuracy if the SQL query 

produced matches the ground truth query exactly. 

Simulated on real-world application, robustness testing tests a model's performance on conditions such as ambiguous 

queries and typos. 

It is thus expected that a mix of both quantitative and qualitative evaluation methods will lead researchers towards a better 

understanding of the strengths and limitations of LLM-based Text-to-SQL systems. 

 

IV. PARAMETERS 

 

Model Type Selection Model architecture-for example, a PLM in the parlance of parlance refers to pre-trained language 

models; LLMs refer to large language models, and so on code-specific models. 

Training Data: How dataset is collected for training, how large is it, how heterogeneous it is, and how related or relevant 

it is to the task of SQL generation. 

Evaluation Metrics: These are the criteria against which correctness of a model is being judged, such as execution 

precision, exact matching, and component matching. 
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V. HYPER-PARAMETERS 

 

Model Parameters: The architecture of the LLM, for example, its number of layers and hidden units, as well as the 

attention heads that can be different for each training of the model. 

Encouraging Strategies : By way of example, the design of prompts – length and structure of prompts given in the zero-

shot and few-shot settings, for example –. 
Learning Rate: More than this, learning rate is a kind of common hyperparameters in fine-tuning models that affects their 

performance 

 

VI. ARCHITECTURE 

 

 

 

 

 

 

 

 

 

 

 

 

Fig .No 1 : Architecture diagram of SQL Query Generator Using LLM 

 

VII. DISCUSSION/ANALYSIS 

 

Aspect Previous Methodologies Modern Approach (LLM) 

 

Natural 

Language 

Processing (NLP) 

Capabilities 

 

Traditional methods relied on rule-based 

systems and structured syntax. These methods 

were limited in capturing the vast range of 

human language nuances, requiring 

predefined grammatical rules and patterns. 

LLM-based systems, especially those like GPT-4, 

leverage extensive pre-trained models that 

understand context, nuance, and semantics in 

natural language. They use vast datasets to 

generalize over unseen queries, offering more 

flexible NLP capabilities. 

 

 

Query 

Generation 

 

Older systems like keyword-based engines 

would parse text into rigid SQL queries, often 

requiring manual adjustments by the user to 

refine complex queries. 

 

LLMs dynamically generate SQL queries from 

complex natural language inputs, understanding 

ambiguous or multi-part queries and automatically 

refining the outputs without user intervention. 

 

 

 

 

Scalability and 

Adaptation 

 

 

 

Traditional NLP query generators often 

required custom scripts or datasets for each 

domain, making it hard to generalize across 

multiple industries or applications. 

 

 

LLMs generalize across different industries and 

applications without extensive reprogramming, 

making them scalable. Pre-training on large datasets 

ensures they can adapt to various sectors. 

 

 



 © 2025 IJIRCCE | Volume 13, Issue 4, April 2025|                                        DOI: 10.15680/IJIRCCE.2025.1304176 

 
  

IJIRCCE©2025                                                       |     An ISO 9001:2008 Certified Journal   |                                                   9264 

7.1 NLP Capabilities Evolution 

Previous approaches to NLP were based on rule- based systems that heavily relied on predefined linguistic patterns. 

These were effective in only a very narrow scope of language processing but failed miserably when variances such as 

ambiguity, slang, and context were encountered. Rule-based approaches needed constantly to be updated by humans and, 

when applied to new queries or languages, required interference once again. 

 

NLP has only begun to change with the advent of LLMs. LLMs have been pre-trained on very large corpora and can 

comprehend any inputs in the complex natural language, including context, syntax, and semantics. Without custom rule 

sets, LLMs are capable of accepting various forms of inputs and will process them without such rule sets, thereby 

increasing their flexibility over traditional methods. Thus, this change allows for a kind of complexity and nuance that 

can be easily created in everyday language about SQL queries in the context of a SQL query generator for the Industrial 

Revolution. 

 

7.2 Query Generation and Refinement 

Query generators used to parse the user inputs in the old days with simple keyword extraction and map the input to SQL 

structures. They were, more often than not, poor at understanding user queries, even simple ones, to more complex or 

multi-step ones. Since users had to edit and revise the queries themselves to correct and complete them, there was a 

constraint on usage, restricted to only more advanced, subtle users. 

 

All the above limitations are bypassed by contemporary SQL editors driven by LLM: Complex natural language is 

automatically parsed in such ways that they capture the user's full intent and translate this into SQL, completely omitting 

the necessity for a human to modify the output. Ambiguous or nested queries are not a problem for them, so they may 

offer refined SQL queries that actually take account of the complexity of natural speech. This jump in automation 

drastically improves efficiency, to say nothing of the improvement in productivity, which must seem enormous in 

industries undergoing digital transformations akin to the Industrial Revolution. 

 

7.3 Query Generation and Refinement 

Query generators used to parse the user inputs in the old days with simple keyword extraction and map the input to SQL 

structures. They were, more often than not, poor at understanding user queries, even simple ones, to more complex or 

multi-step ones. Since users had to edit and revise the queries themselves to correct and complete them, there was a 

constraint on usage, restricted to only more advanced, subtle users. 

 

All the above limitations are bypassed by contemporary SQL editors driven by LLM: Complex natural language is 

automatically parsed in such ways that they capture the user's full intent and translate this into SQL, completely omitting 

the necessity for a human to modify the output. Ambiguous or nested queries are not a problem for them, so they may 

offer refined SQL queries that actually take account of the complexity of natural speech. This jump in automation drasti 

cally improves efficiency, to say nothing of the improvement in productivity, which must seem enormous in industries 

undergoing digital transformations akin to the Industrial Revolution. 

 

7.4 Scalability and Adaptation Across Industries 

This LLM-based system will revolutionize the capabilities available for the interpretation of user queries into complex 

SQL code quite similarly to the way the technology shift in general should reflect a shift in automating query processes. 

Following is how you would start building an NLP- to-SQL query generator, especially on data analytics over the 

Industrial Revolution, using LLMs like GPT models. 

 

7.4.1. Dataset Setup 

Suppose you have a database regarding information related to the Industrial Revolution. For purposes of this 

discussion, let's assume your database includes tables such as: 

• industries: Records of industries impacted during the Industrial Revolution. 

• inventions: Key inventions and their effects on productivity. 

• countries: Countries that participated and their industrial output. 

• labor: Information about labor conditions, wages, and hours. 
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7.4.2. Querying Process 

When you give it an NLP query, the model will 

1, Interpret the question. 

2. Produce a valid SQL query from the database schema. 

3. Retrieve the results from the database. 

4. Present the results in a tabular format. 

5. Optionally, generate a paragraph summary based on the analysis. 

 

7.4.3. Example 1: Query Analysis in Table Format 

NLP Query: "Show me the industrial output of each country during the Industrial Revolution." 

Step 1: SQL Query 

The LLM interprets this NLP input and generates the following SQL query: 

SELECT country_name, total_industrial_output FROM countries 

ORDER BY total_industrial_output DESC; 

 

Step 2: Output (Tabular Format) 

 

Country 
Total Industrial 

Output 

United 

Kingdom 
10,00,000 

Germany 8,50,000 

United 

States 
7,00,000 

France 5,00,000 

Japan 3,00,000 

 

Step 3: Paragraph Summary 

"The United Kingdom had the highest industrial output during the Industrial Revolution with a total of 1,000,000 units. 

Germany followed closely behind with 850,000 units. The United States and France had 700,000 and 500,000 units, 

respectively. Japan, which industrialized later, contributed a total of 300,000 units to the global industrial output during 

this period." 

 

7.4.4. Example 2: Query with Deeper Analysis 

NLP Query: "Analyze the impact of key inventions on industrial productivity." 

Step 1: SQL Query 

SELECT invention_name, year_invented, productivity_increase 

FROM inventions 

ORDER BY productivity_increase DESC; 

Step 2: Output (Tabular Format) 

 

Invention Year 

Invented 

Productivity 

Increase (%) 

Steam Engine 1776 200 

Spinning 

Jenny 

1764 150 
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Power Loom 1785 120 

Cotton Gin 1793 100 

Bessemer 

Process 

1856 90 

 

Step 3: Paragraph Summary 

"The Steam Engine, invented in 1776, had the most significant impact on industrial productivity, increasing it by 200%. 

The Spinning Jenny and Power Loom also played crucial roles in boosting productivity by 150% and 120%, respectively. 

The Cotton Gin (1793) and the Bessemer Process (1856) contributed to significant improvements in industrial 

manufacturing, each leading to an increase in productivity by over 90%." 

 

7.4.5. Workflow to Build the NLP-to-SQL Generator: 

1. Text Parsing: Use a language model to parse natural language questions and identify key components (tables, 

columns, etc.). 

2. SQL Generation: Use templates or dynamic code generation to convert parsed queries into SQL syntax. 

3. Execution & Retrieval: Run the generated SQL against your database and fetch results. 

4. Analysis & Summarization: Use the language model to summarize results in a paragraph based on the returned 

data. 

 

VIII. CONCLUSION 

 

This research reviews key advancements and ongoing challenges in text-to-SQL and SQL generation. It highlights 

innovative approaches and tools such as large language models (LLMs), automatic test case generation, re-ranking 

candidate lists, and the BIRD benchmark to enhance SQL query generation accuracy and efficiency. Systems like SQL-

fuse and Mallet have improved schema linking, rule generation, and scalability. The research also emphasizes integrating 

feedback mechanisms, optimizing query performance, and using keyword-based query suggestions. Despite these 

advancements, challenges remain in handling complex queries and enhancing real-world applicability. Future research 

should focus on improving these methods, optimizing performance, and exploring new test case generation techniques. 

 

IX. FUTURE SCOPE 

 

The future scope of LLM-based Text-to-SQL is promising, especially when dealing with key challenges such as 

robustness, computational efficiency, and data privacy. Some of the important points for future developments are as 

follows: 

Real-world Robustness: Generalizing the LLM- based Text-to-SQL systems to more complex and ambiguous real-

world questions is a huge challenge. Future research work would involve further handling of noisy data, user ambiguity, 

and further improving generalization across various databases and languages(R2). 

 

Efficiency: Future work would reduce computational costs for handling complex databases while developing better 

schema filtering techniques and methods making the models more computationally efficient(R2). 

 

Data Privacy: As interfaces that provide Text-to- SQL become the new standard, privacy concerns rise up, especially 

during queries of sensitive data, on proprietary LLMs. The imperative aspect would be to develop local fine-tuning and 

execution frameworks that handle these concerns(R2). 

 

Improved Interpretability and Explainability: The state of the art for LLM-based models is to be black boxes. Hence, 

future work should therefore strive to better improve interpretability of SQL generation processes with the help of 

ensuring that decisions made by such models can be understood and validated by users(R2) 
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