

International Journal of Innovative Research in

Computer and Communication Engineering
(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

 Impact Factor: 8.771 Volume 13, Issue 4, April 2025

 © 2025 IJIRCCE | Volume 13, Issue 4, April 2025| DOI: 10.15680/IJIRCCE.2025.1304176

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9260

Industrial Revolution NLP to SQL Query

Generator Using LLM

Mrs. Deepali Hajare1, Mrs. Varsha Pandagre2, Mr. Vijay Shete3, Mr. Piyush Kinage4,

Mr. Devkumar Biswas5, Mr. Atharva Desai6

Assistant Professor, Department of AI&DS, Dr. D. Y. Patil International University, Akurdi, Pune, India1,2

UG Students, Department of AI & DS, Dr. D. Y. Patil Institute of Engineering, Management and Research, Akurdi,

Pune, India3,4,5,6

ABSTRACT: Creating correct SQL queries from everyday language questions (text-to-SQL) has been a longstanding

problem. This is because it's hard to understand user questions, grasp database layouts, and write SQL. Old- school text-

to-SQL systems, which mix human know- how and smart computer networks, have made big strides. When pre-trained

language models (PLMs) came along, things got even better. But as databases get more complex, people ask trickier

questions. This makes PLMs spit out wrong SQL because they can handle so much. To fix this, we need fancier ways to

make things work better. But that means PLM-based system can't be used as big language models (LLMs) have shown

they're good at understanding human talk as they get bigger. This opens up new doors and makes text-to-SQL research

better. This study gives a full look at LLM-based text-to-SQL methods. It covers technical hurdles how text-to-SQL has

changed over time, datasets and ways to measure how well things work new breakthroughs, and where research might

go next. By using LLMs, this field might get past current roadblocks, make working with databases easier, and come up

with solid answers for talking to databases in plain language.

KEYWORDS: Natural Language LLM, Text-to-SQL, PLM Boolean query generators.

I. INTRODUCTION

1.1. Domain:

Text-to-SQL systems that aim to convert natural language questions into SQL queries for databases, and they are based

on LLMs. It surveys the evolution of rule-based systems to deep learning and large language models; to include the

difficulties with linguistic complexity, schema comprehension, and SQL generation. Also, this would analyze further

some of the datasets, evaluation metrics, and recent advancements in integrating LLMs; it also addresses directions for

future research on how to make Text- to-SQL more robust, computationally efficient, and applicable in real-world

applications.

1.2. Application

Applications of LLM-based Text-to-SQL include the very diverse domain across all industries. It enables a non-expert

to query complex databases with natural language, thereby making data extraction for insights simplified without the

need for SQL skills. Customer support uses it for automating database queries, and that's why response time and accuracy

are increased. Healthcare professionals can easily go through the patients' data without much trouble and analyze it.

These systems further help researchers to query datasets for analysis and discoveries without the need to have deep

knowledge of SQL in scientific research.

1.3. Models and Methodologies

1.3.1 Models

Text-to-SQL systems based on LLM. They include:

Pre-trained Language Models (PLMs): Models like BERT and RoBERTa are fine-tuned for SQL generation tasks,

picking up from their strong semantic parsing capabilities. Large Language Models: SQL queries are produced using

large language models through in-contextlearning and fine-tuning. In such models, GPT-3, GPT-4, and ChatGPT is

produced.

 © 2025 IJIRCCE | Volume 13, Issue 4, April 2025| DOI: 10.15680/IJIRCCE.2025.1304176

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9261

Code-specific LLMs: Models such as Codex and CodeLLaMA , which are specifically pre-trained on programming

languages and fine-tuned to optimize the output SQL for the specific task.

1.3.2 Methodology

Methodology of LLM-based Text-to-SQL systems includes the following steps:

Data Collection: Datasets to train the models: Containing natural language questions along with corresponding SQL

queries.

Model Training: Fine-tune the pre-trained language model BERT, GPT-3, GPT-4, or code-specific models such as Codex

on the dataset to map the natural language into SQL. In summary, one has to be aware of the structure of the database

schema (tables, columns) and also needs to connect the schema elements with the questions from the users via schema

linking.

SQL Generation: Translate a natural language question to syntactically accurate executable SQL queries with the help

of models..Evaluation: Use metrics like execution accuracy and component matching to score how well the generated

SQL performs.

Optimization: Employ techniques such as in-context learning, prompt engineering, and execution feedback to improve

the accuracy in the generation of SQL.

1.4. Analysis

Similarities

Natural Language Understanding: All the models employ deep learning techniques so that the meaning of user queries

is understood, and then correct SQL is generated.

Schema Linking: Both the models highlight linking natural language inputs with suitable database schema for effective

retrieval.

Optimization Techniques: Widely followed techniques include in-context learning and prompt engineering to optimize

accuracy and efficiency for SQL generation.

Differences

Training Data: The training data sets can be pretty different, the training could be on general-purpose or specific SQL-

related tasks.

Complexity Handling: A model may be super robust in handling a complex SQL query containing nested sub-queries and

joins while other models may fail at such presentations as it is not well trained.

II. RELATED WORK

Sr.

No

Paper Title Journal Name Authors &

Publication Date

Methodology

1

Bridging the Gap: Text-

to-SQL Conversion with

Pre-trained Language

Models

Journal of Artificial

Intelligence

Research

Wang, H., Liu, Z., &

Chen, M., March

2021

Introduces an approach using BERT-

based models to improve text-to-SQL

conversion by pre-training on large

datasets and fine-tuning with SQL-

specific data

2 Leveraging Transformer

Models for Accurate SQL

Query Generation

IEEE Transactions

on Knowledge and

Data Engineering

Iyer, S., & Dey, S.,

July 2020

Proposes a transformer-based

architecture to address the complexity

of natural language-

Execution Feedback Incorporation: Some of the

approaches include execution feedback that can be

used to improve the SQL query. Other approaches

may include generation without iterative

improvement.

 © 2025 IJIRCCE | Volume 13, Issue 4, April 2025| DOI: 10.15680/IJIRCCE.2025.1304176

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9262

3

Improving Text-to-SQL

Translation with

Context-Aware Learning

Proceedings of the

2022 Conference on

EMNLP

Zhang, Y., &

Tsvetkov, Y.,

November 2022

Utilizes context-aware learning to

refine SQL query generation,

integrating schema information into

the learning process to enhance

accuracy

4

Schema Mapping for

Text-to-SQL Systems: A

Machine Learning

Approach

Journal of Data

Science and AI

Research

Krishnamurthy, J.,

& Mendez, M.,

January 2023

Focuses on schema mapping using a

machine learning approach,

improving alignment between natural

language and database structures for

better SQL generation

5

Reinforcement Learning

for Text-to-SQL:

Enhancing Accuracy

with User Feedback

International

Conference on

Machine Learning

(ICML)

Chen, J., & Su, D.,

June 2021

Employs reinforcement learning with

continuous user feedback to

iteratively refine the accuracy of text-

to-SQL conversion models

6

RNA-based Neural

Network Models for

Biological Data

Processing

Nature

Computational

Biology

Singh, R., Kumar,

P., & Zhao, H., April

2021

Explores the use of RNA-inspired

neural network models for processing

large-scale biological data, with a

focus on genomics and molecular

interactions

7

RNA and AI: Integrating

NLP for Biological

Sequence Analysis

Bioinformatics

Journal

Patel, S., & Gupta,

A., September 2022

Investigates the application of natural

language processing (NLP) models in

RNA sequence analysis, improving

prediction and annotation of RNA

functions

8

RNA Structural Biology

Meets AI: Predicting

RNA Structures Using

Neural Networks

RNA Biology

Wu, X., & Liu,

February 2020

Applies neural network models to

predict RNA structures,

demonstrating enhanced

performance in modeling 3D RNA

configurations compared to

traditional methods

III. EVALUATION

Some of the common metrics include execution accuracy. This is a metric that tests whether the SQL query, generated by

the generator, indeed generates the right results when run against the database. It checks the accuracy if the SQL query

produced matches the ground truth query exactly.

Simulated on real-world application, robustness testing tests a model's performance on conditions such as ambiguous

queries and typos.

It is thus expected that a mix of both quantitative and qualitative evaluation methods will lead researchers towards a better

understanding of the strengths and limitations of LLM-based Text-to-SQL systems.

IV. PARAMETERS

Model Type Selection Model architecture-for example, a PLM in the parlance of parlance refers to pre-trained language

models; LLMs refer to large language models, and so on code-specific models.

Training Data: How dataset is collected for training, how large is it, how heterogeneous it is, and how related or relevant

it is to the task of SQL generation.

Evaluation Metrics: These are the criteria against which correctness of a model is being judged, such as execution

precision, exact matching, and component matching.

 © 2025 IJIRCCE | Volume 13, Issue 4, April 2025| DOI: 10.15680/IJIRCCE.2025.1304176

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9263

V. HYPER-PARAMETERS

Model Parameters: The architecture of the LLM, for example, its number of layers and hidden units, as well as the

attention heads that can be different for each training of the model.

Encouraging Strategies : By way of example, the design of prompts – length and structure of prompts given in the zero-

shot and few-shot settings, for example –.
Learning Rate: More than this, learning rate is a kind of common hyperparameters in fine-tuning models that affects their

performance

VI. ARCHITECTURE

Fig .No 1 : Architecture diagram of SQL Query Generator Using LLM

VII. DISCUSSION/ANALYSIS

Aspect Previous Methodologies Modern Approach (LLM)

Natural

Language

Processing (NLP)

Capabilities

Traditional methods relied on rule-based

systems and structured syntax. These methods

were limited in capturing the vast range of

human language nuances, requiring

predefined grammatical rules and patterns.

LLM-based systems, especially those like GPT-4,

leverage extensive pre-trained models that

understand context, nuance, and semantics in

natural language. They use vast datasets to

generalize over unseen queries, offering more

flexible NLP capabilities.

Query

Generation

Older systems like keyword-based engines

would parse text into rigid SQL queries, often

requiring manual adjustments by the user to

refine complex queries.

LLMs dynamically generate SQL queries from

complex natural language inputs, understanding

ambiguous or multi-part queries and automatically

refining the outputs without user intervention.

Scalability and

Adaptation

Traditional NLP query generators often

required custom scripts or datasets for each

domain, making it hard to generalize across

multiple industries or applications.

LLMs generalize across different industries and

applications without extensive reprogramming,

making them scalable. Pre-training on large datasets

ensures they can adapt to various sectors.

 © 2025 IJIRCCE | Volume 13, Issue 4, April 2025| DOI: 10.15680/IJIRCCE.2025.1304176

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9264

7.1 NLP Capabilities Evolution

Previous approaches to NLP were based on rule- based systems that heavily relied on predefined linguistic patterns.

These were effective in only a very narrow scope of language processing but failed miserably when variances such as

ambiguity, slang, and context were encountered. Rule-based approaches needed constantly to be updated by humans and,

when applied to new queries or languages, required interference once again.

NLP has only begun to change with the advent of LLMs. LLMs have been pre-trained on very large corpora and can

comprehend any inputs in the complex natural language, including context, syntax, and semantics. Without custom rule

sets, LLMs are capable of accepting various forms of inputs and will process them without such rule sets, thereby

increasing their flexibility over traditional methods. Thus, this change allows for a kind of complexity and nuance that

can be easily created in everyday language about SQL queries in the context of a SQL query generator for the Industrial

Revolution.

7.2 Query Generation and Refinement

Query generators used to parse the user inputs in the old days with simple keyword extraction and map the input to SQL

structures. They were, more often than not, poor at understanding user queries, even simple ones, to more complex or

multi-step ones. Since users had to edit and revise the queries themselves to correct and complete them, there was a

constraint on usage, restricted to only more advanced, subtle users.

All the above limitations are bypassed by contemporary SQL editors driven by LLM: Complex natural language is

automatically parsed in such ways that they capture the user's full intent and translate this into SQL, completely omitting

the necessity for a human to modify the output. Ambiguous or nested queries are not a problem for them, so they may

offer refined SQL queries that actually take account of the complexity of natural speech. This jump in automation

drastically improves efficiency, to say nothing of the improvement in productivity, which must seem enormous in

industries undergoing digital transformations akin to the Industrial Revolution.

7.3 Query Generation and Refinement

Query generators used to parse the user inputs in the old days with simple keyword extraction and map the input to SQL

structures. They were, more often than not, poor at understanding user queries, even simple ones, to more complex or

multi-step ones. Since users had to edit and revise the queries themselves to correct and complete them, there was a

constraint on usage, restricted to only more advanced, subtle users.

All the above limitations are bypassed by contemporary SQL editors driven by LLM: Complex natural language is

automatically parsed in such ways that they capture the user's full intent and translate this into SQL, completely omitting

the necessity for a human to modify the output. Ambiguous or nested queries are not a problem for them, so they may

offer refined SQL queries that actually take account of the complexity of natural speech. This jump in automation drasti

cally improves efficiency, to say nothing of the improvement in productivity, which must seem enormous in industries

undergoing digital transformations akin to the Industrial Revolution.

7.4 Scalability and Adaptation Across Industries

This LLM-based system will revolutionize the capabilities available for the interpretation of user queries into complex

SQL code quite similarly to the way the technology shift in general should reflect a shift in automating query processes.

Following is how you would start building an NLP- to-SQL query generator, especially on data analytics over the

Industrial Revolution, using LLMs like GPT models.

7.4.1. Dataset Setup

Suppose you have a database regarding information related to the Industrial Revolution. For purposes of this

discussion, let's assume your database includes tables such as:

• industries: Records of industries impacted during the Industrial Revolution.

• inventions: Key inventions and their effects on productivity.

• countries: Countries that participated and their industrial output.

• labor: Information about labor conditions, wages, and hours.

 © 2025 IJIRCCE | Volume 13, Issue 4, April 2025| DOI: 10.15680/IJIRCCE.2025.1304176

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9265

7.4.2. Querying Process

When you give it an NLP query, the model will

1, Interpret the question.

2. Produce a valid SQL query from the database schema.

3. Retrieve the results from the database.

4. Present the results in a tabular format.

5. Optionally, generate a paragraph summary based on the analysis.

7.4.3. Example 1: Query Analysis in Table Format

NLP Query: "Show me the industrial output of each country during the Industrial Revolution."

Step 1: SQL Query

The LLM interprets this NLP input and generates the following SQL query:

SELECT country_name, total_industrial_output FROM countries

ORDER BY total_industrial_output DESC;

Step 2: Output (Tabular Format)

Country
Total Industrial

Output

United

Kingdom
10,00,000

Germany 8,50,000

United

States
7,00,000

France 5,00,000

Japan 3,00,000

Step 3: Paragraph Summary

"The United Kingdom had the highest industrial output during the Industrial Revolution with a total of 1,000,000 units.

Germany followed closely behind with 850,000 units. The United States and France had 700,000 and 500,000 units,

respectively. Japan, which industrialized later, contributed a total of 300,000 units to the global industrial output during

this period."

7.4.4. Example 2: Query with Deeper Analysis

NLP Query: "Analyze the impact of key inventions on industrial productivity."

Step 1: SQL Query

SELECT invention_name, year_invented, productivity_increase

FROM inventions

ORDER BY productivity_increase DESC;

Step 2: Output (Tabular Format)

Invention Year

Invented

Productivity

Increase (%)

Steam Engine 1776 200

Spinning

Jenny

1764 150

 © 2025 IJIRCCE | Volume 13, Issue 4, April 2025| DOI: 10.15680/IJIRCCE.2025.1304176

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9266

Power Loom 1785 120

Cotton Gin 1793 100

Bessemer

Process

1856 90

Step 3: Paragraph Summary

"The Steam Engine, invented in 1776, had the most significant impact on industrial productivity, increasing it by 200%.

The Spinning Jenny and Power Loom also played crucial roles in boosting productivity by 150% and 120%, respectively.

The Cotton Gin (1793) and the Bessemer Process (1856) contributed to significant improvements in industrial

manufacturing, each leading to an increase in productivity by over 90%."

7.4.5. Workflow to Build the NLP-to-SQL Generator:

1. Text Parsing: Use a language model to parse natural language questions and identify key components (tables,

columns, etc.).

2. SQL Generation: Use templates or dynamic code generation to convert parsed queries into SQL syntax.

3. Execution & Retrieval: Run the generated SQL against your database and fetch results.

4. Analysis & Summarization: Use the language model to summarize results in a paragraph based on the returned

data.

VIII. CONCLUSION

This research reviews key advancements and ongoing challenges in text-to-SQL and SQL generation. It highlights

innovative approaches and tools such as large language models (LLMs), automatic test case generation, re-ranking

candidate lists, and the BIRD benchmark to enhance SQL query generation accuracy and efficiency. Systems like SQL-

fuse and Mallet have improved schema linking, rule generation, and scalability. The research also emphasizes integrating

feedback mechanisms, optimizing query performance, and using keyword-based query suggestions. Despite these

advancements, challenges remain in handling complex queries and enhancing real-world applicability. Future research

should focus on improving these methods, optimizing performance, and exploring new test case generation techniques.

IX. FUTURE SCOPE

The future scope of LLM-based Text-to-SQL is promising, especially when dealing with key challenges such as

robustness, computational efficiency, and data privacy. Some of the important points for future developments are as

follows:

Real-world Robustness: Generalizing the LLM- based Text-to-SQL systems to more complex and ambiguous real-

world questions is a huge challenge. Future research work would involve further handling of noisy data, user ambiguity,

and further improving generalization across various databases and languages(R2).

Efficiency: Future work would reduce computational costs for handling complex databases while developing better

schema filtering techniques and methods making the models more computationally efficient(R2).

Data Privacy: As interfaces that provide Text-to- SQL become the new standard, privacy concerns rise up, especially

during queries of sensitive data, on proprietary LLMs. The imperative aspect would be to develop local fine-tuning and

execution frameworks that handle these concerns(R2).

Improved Interpretability and Explainability: The state of the art for LLM-based models is to be black boxes. Hence,

future work should therefore strive to better improve interpretability of SQL generation processes with the help of

ensuring that decisions made by such models can be understood and validated by users(R2)

 © 2025 IJIRCCE | Volume 13, Issue 4, April 2025| DOI: 10.15680/IJIRCCE.2025.1304176

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9267

REFERENCES

1. Z. Hong, Z. Yuan, Q. Zhang, H. Chen, J. Dong, F. Huang, and X. Huang, "Next- Generation Database Interfaces: A

Survey of LLM-based Text-to-SQL," arXiv, 2024. Available: arXiv:2406.08426v3.

2. Stack Overflow, "Developer Trends in SQL Usage," Stack Overflow, 2023. Available:

https://survey.stackoverflow.co/2023.

3. DIN-SQL, "A Decomposed In-Context Learning Framework for Text-to-SQL Using GPT-4," presented at NeurIPS

2023, 2023.

4. DESEM+P, "Prompt Optimization for Robust SQL Generation with Schema Filtering," PRICAI 2023, 2023.

5. DAIL-SQL, "Hybrid Few-Shot Learning for Text-to-SQL with Enhanced Schema Linking," VLDB 2024, 2023.

6. ACT-SQL, "Dynamic Example Selection for Chain-of-Thought Reasoning in Text- to-SQL," EMNLP 2023

Findings, 2023.

7. J. Guo, B. Sun, Z. Qian, H. Wang, Z. Li, and Y. Yin, "Bridging the Gap Between Natural Language and Databases:

Transformer-based SQL Generation," Journal of Artificial Intelligence Research (JAIR), vol. 73, pp. 212-230, 2023.

8. Available: https://doi.org/10.1613/jair.1.13029.

9. X. Wang, S. Liu, B. Xu, and P. Liang, "RAT-SQL: Relation-Aware Transformer for Schema-Guided Text-to-SQL

Parsing," Transactions of the Association for Computational Linguistics (TACL), vol. 11,

10. pp. 159-174, 2023. Available: https://doi.org/10.1162/tacl_a_00556.

11. V. Zhong, C. Xiong, and R. Socher, "Semantic Parsing with Self-Attention and Sequence-to-Sequence Models for

Text-to- SQL," in Proceedings of the ACL 2020 Conference, 2020. Available:

https://www.aclweb.org/anthology/2020.a cl-main.423.pdf.

12. K. Borisov, J. Lang, and T. Lei, "Few-Shot Text-to-SQL: Training and Evaluating Models for Low-

Resource SQL Generation," ICLR 2024, 2024. Available: https://openreview.net/forum?id=FewShot SQL2024.

13. J. Li, M. Huang, and J. Wang, "Memory- Augmented Large Language Models for SQL Generation with Complex

Queries," AAAI 2024 Proceedings, 2024. Available: https://www.aaai.org/aaai24-224.pdf.

14. X. Zhang, K. Yao, and Z. Chen, "Multimodal SQL Generation from Text and Images Using Unified Pre-trained

Models," NeurIPS 2023, 2023. Available:

https://survey.stackoverflow.co/2023
https://doi.org/10.1613/jair.1.13029
https://doi.org/10.1162/tacl_a_00556
https://www.aclweb.org/anthology/2020.acl-main.423.pdf
https://www.aclweb.org/anthology/2020.acl-main.423.pdf
https://openreview.net/forum?id=FewShotSQL2024
https://openreview.net/forum?id=FewShotSQL2024
https://www.aaai.org/aaai24-224.pdf

 8.379

	Mrs. Deepali Hajare1, Mrs. Varsha Pandagre2, Mr. Vijay Shete3, Mr. Piyush Kinage4,
	Mr. Devkumar Biswas5, Mr. Atharva Desai6
	I. INTRODUCTION
	1.1. Domain:
	1.2. Application
	1.3. Models and Methodologies
	1.3.2 Methodology
	1.4. Analysis

	II. RELATED WORK
	IV. PARAMETERS
	V. HYPER-PARAMETERS
	VII. DISCUSSION/ANALYSIS
	7.1 NLP Capabilities Evolution
	7.2 Query Generation and Refinement
	7.3 Query Generation and Refinement
	7.4 Scalability and Adaptation Across Industries
	7.4.1. Dataset Setup
	7.4.2. Querying Process
	7.4.3. Example 1: Query Analysis in Table Format
	Step 1: SQL Query
	Step 2: Output (Tabular Format)
	Step 3: Paragraph Summary

	7.4.4. Example 2: Query with Deeper Analysis
	Step 1: SQL Query
	Step 2: Output (Tabular Format)

	VIII. CONCLUSION
	IX. FUTURE SCOPE
	REFERENCES

