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ABSTRACT:Typhoons are catastrophic weather events that cause severe damage to lives, infrastructure, and 

economies, especially in coastal and tropical regions. Timely and accurate forecasting of typhoon behavior, including 

their formation, intensity, trajectory, and landfall zones, is essential for disaster preparedness and response. This study 

introduces a Typhoon Prediction System that integrates historical meteorological data with real-time satellite imagery 

to achieve highly accurate predictions. By leveraging advanced machine learning algorithms and image processing 

techniques, the system addresses the limitations of traditional forecasting methods and provides a dynamic, real-time 

solution. The proposed system utilizes critical meteorological variables such as wind speed, atmospheric pressure, and 

cloud formation patterns from historical datasets, combined with high-resolution satellite imagery from geostationary 

satellites like Himawari-8. The framework incorporates preprocessing and feature extraction to harmonize diverse data 

sources. Sequential models like Long Short-Term Memory (LSTM) networks analyze time-series data, while 

Convolutional Neural Networks (CNNs) process satellite imagery to detect cloud density, wind field structures, and 

other typhoon-related patterns. The model achieves real-time calibration using live data inputs, enabling adaptive 

forecasting capabilities that improve accuracy and responsiveness. By offering actionable insights, the system 

strengthens disaster management strategies, aiding governments and relief organizations in minimizing loss of life and 

property. This study addresses challenges in data integration and scalability while aligning with global sustainability 

goals to enhance climate resilience. The proposed solution demonstrates significant potential to mitigate the impacts of 

typhoons, laying a foundation for future advancements in extreme weather forecasting. 
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I. INTRODUCION 

   

Typhoons, also known as tropical cyclones or hurricanes, are some of the most destructive natural phenomena on Earth, 

causing widespread devastation to life, property, and infrastructure. These storms, which form in tropical and 

subtropical regions, are characterized by their extreme wind speeds, heavy rainfall, and intense storm surges, leading to 

widespread flooding, damage to buildings and infrastructure, and loss of life. The severe impact of these storms on 

communities, economies, and ecosystems makes accurate and timely forecasting critical for minimizing casualties and 

damage. Historically, typhoon prediction systems have relied on meteorological data and weather patterns observed 

over time to predict storm trajectories, intensities, and potential landfall zones. While these methods have been 

somewhat effective, they face significant limitations in terms of real-time adaptability and accuracy in forecasting 

typhoon behavior. 

 

Traditional forecasting techniques generally fall into two categories: statistical models and physical models. Statistical 

models use historical data, such as past typhoon tracks, intensities, and associated meteorological variables, to build 

predictions based on observed patterns. These models are relatively simple and computationally efficient but fail to 

account for real-time variations in weather patterns, leading to lower accuracy in dynamic environments. Physical 

models, on the other hand, use mathematical equations to simulate the physical processes governing typhoon 

development and movement. While these models are more sophisticated, they require a vast amount of computational 

power and still face limitations in providing real-time updates during the rapid evolution of storms. As a result, both 

types of forecasting systems struggle to offer precise predictions that account for the unpredictable nature of modern 

typhoons. To address these limitations, this study explores the integration of historical data with real-time satellite 
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imagery and machine learning techniques. The combination of these data sources provides a more comprehensive and 

dynamic view of the storm system, enabling more accurate predictions. By analyzing both historical meteorological 

parameters and live satellite imagery, the proposed approach incorporates the strengths of both static and dynamic data, 

enabling real-time adaptability and improving prediction accuracy. This study aims to create a highly accurate and 

adaptive typhoon prediction system that can forecast not only the occurrence of a typhoon but also its potential 

trajectory, intensity, and landfall zones. The use of machine learning models, such as Random Forest Regressors and 

advanced image processing algorithms, plays a central role in the success of the proposed system. These techniques 

allow for the modeling of complex relationships within the data, enabling the system to predict storm behavior based on 

multiple variables, including wind speed, atmospheric pressure, cloud density, and sea surface temperature. 

 

The proposed methodology begins by analyzing historical meteorological data, which includes past records of 

typhoons, their intensities, and trajectories. This historical data serves as the foundation for training machine learning 

models that can predict future typhoon events based on observed patterns. By incorporating key meteorological 

variables, such as wind speed, pressure, and temperature, the system can predict the likelihood of a typhoon forming, as 

well as its potential path and intensity. The historical data is also used to train models that can identify potential landfall 

zones, based on past storm behavior and geographic factors. Once the machine learning models are trained using 

historical data, the system moves to the second stage: processing real-time satellite images. Satellite imagery provides a 

valuable source of information about current weather conditions, including cloud formations, sea surface temperatures, 

and other factors critical to storm prediction. 

 

The real-time satellite images are processed using advanced image processing algorithms to detect and analyze key 

weather patterns associated with typhoon formation and intensification. For example, cloud density and structure are 

crucial indicators of storm development, and variations in sea surface temperature can influence the intensity and path 

of a typhoon. Image processing algorithms are used to extract these features from satellite images, enabling the system 

to detect evolving weather patterns and track the movement of the storm.  

 

Once the data from both historical meteorological records and live satellite imagery is processed, the system integrates 

these data sources to dynamically update forecasts. The integration of these two data types allows for a more 

comprehensive understanding of the storm’s behavior and provides more precise predictions about its intensity, 

trajectory, and landfall. Machine learning models, including Random Forest Regressors and Long Short-Term Memory 

(LSTM) networks, are used to generate predictions based on the integrated data. Random Forest Regressors are a type 

of ensemble machine learning model that works by constructing multiple decision trees and combining their outputs to 

make predictions. This approach helps capture complex, nonlinear relationships in the data, which is crucial for 

accurately forecasting typhoon behavior. LSTM networks, a type of recurrent neural network (RNN), are particularly 

suited for time-series data and are employed to analyze the temporal patterns in the historical data. LSTMs can capture 

long-term dependencies in the data, enabling the system to predict future typhoon behavior based on past storm 

dynamics. In addition to machine learning models, advanced data augmentation techniques are employed to improve 

model performance. Data augmentation is a process of artificially increasing the size of the training dataset by 

introducing variations, such as rotating or flipping satellite images or adding noise to meteorological data. This helps 

the models generalize better and reduces the risk of overfitting to specific patterns in the training data. By incorporating 

data augmentation, the system can improve its prediction accuracy under varying environmental conditions, ensuring 

robustness and reliability in real-world applications. 

II. METHODOLOGY 

 

Data Gathering The data gathering process for this project involves collecting both historical meteorological data and 

satellite imagery, as well as real-time data streams. Historical meteorological data includes parameters such as wind 

speed, atmospheric pressure, temperature, and storm trajectories, sourced from reliable meteorological databases. 

Additionally, a collection of satellite historical data consisting of typhoon images was obtained. These images provide 

valuable visual insights into past typhoon formations, cloud patterns, and trajectories, serving as an essential resource 

for training machine learning models. 

 

Real-time satellite imagery is also gathered from live feeds, capturing ongoing atmospheric changes. Together, these 

datasets offer a comprehensive understanding of typhoon behaviors over time and in real-time contexts. All data is 
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meticulously validated and preprocessed to address issues such as noise, missing values, and inconsistent formats, 

ensuring high-quality inputs for exploratory analysis and predictive modeling. By integrating historical satellite images 

with current meteorological data, the project enhances its capability to predict typhoon events dynamically and 

accurately.The other documents published by The Ministry of Economic Affairs[1] are Introductory Notes and Heat 

Content of Energy Products, both of which documents have data related to the fuel sources and the units in the Yearly 

Energy Table. With this, we also gathered data such as Abbreviation and Equivalents of Energy Units for Taiwan, 

Taiwan Population and also Yearbook 2021 of Taiwan. All of these resources further helped us to visualize and 

understand the data in the Yearly Energy Table. 

 

 The Taiwan Yearly Energy Table has been organized into multiple sheets corresponding to different years, as depicted 

above. The diverse fuel categories are depicted in the columns, while the rows show the sectors that employ them. 

From figure 2, we can see that the fuel sources are in their original units. As said earlier, different versions of the table 

are available with different units. 

 

After we gathered data for Taiwan, we step up to gather data for Taichung. First, we start with the industries present in 

Taichung. 

These historical IR satellite images capture the intricate patterns and dynamics of past typhoons, providing critical 

insights into their development and behavior. The images showcase variations in cloud density, temperature gradients, 

and storm intensity, which are essential for understanding the lifecycle of these powerful weather systems. Infrared 

imaging is particularly valuable for detecting heat signatures, allowing meteorologists to study typhoon structures both 

during the day and night. 

 

The swirling cloud bands, highlighted in these IR visuals, reveal key features like the storm’s eye, convective activity, 

and areas of intense precipitation. By analyzing such images, researchers can identify trends in storm formation, track 

their trajectories, and estimate wind speeds.  

These IR images are integral to developing machine learning models for typhoon prediction, as they provide a rich 

dataset for training algorithms to recognize patterns associated with storm intensification and movement.  

 

The historical perspective they offer is crucial for improving future forecasting accuracy, making them a cornerstone of 

modern meteorological studies. While prioritizing inclusivity in our data acquisition efforts, we understand the 

importance of focused analysis. Following this comprehensive data gathering phase, we will carefully curate and refine 

the data, retaining only the most relevant elements for our investigation. 

 

Data Organizing The data organization process in this project is a critical step to ensure that the collected information is 

structured, consistent, and ready for analysis. The dataset comprises two main components: historical meteorological 
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data and satellite imagery. Historical data includes variables such as wind speed, atmospheric pressure, temperature, 

and storm trajectories, while satellite images capture the visual patterns of typhoons. 

 

To streamline analysis, the data is categorized into distinct groups based on relevance and type. For instance, 

meteorological data is organized chronologically to facilitate time-series analysis, whereas satellite images are labeled 

according to typhoon events and their development stages. Metadata, such as timestamps and geographical coordinates, 

is attached to each entry to maintain context and traceability. 

 

Data cleaning and preprocessing are integral to this phase, addressing missing values, removing redundancies, and 

standardizing formats for compatibility across various machine learning models. Additionally, satellite imagery is 

further processed to extract meaningful features like cloud density and storm patterns. This systematic organization 

ensures seamless integration of diverse data sources, enabling efficient exploratory analysis, modeling, and validation. 

By evaluating feature importance, the graph highlights the significance of wind speed as a predictive variable for 

typhoon intensity and trajectory, while atmospheric pressure also plays a crucial complementary role. These insights 

enable the optimization of the model by focusing on the most relevant parameters, enhancing prediction accuracy and 

computational efficiency. The comparative visualization underscores the critical role of data-driven feature selection in 

constructing robust forecasting models. 

 

Data Analyzing and Visualization In this project, the integration of historical meteorological data and satellite imagery 

provides a comprehensive approach to understanding and forecasting typhoon patterns. Additionally, a novel aspect of 

this study involves the integration of historical satellite images with live satellite images, specifically focusing on cities 

in Taiwan. This integration enables a dynamic and detailed analysis of typhoon impacts and urban resilience. This 

section outlines the processes involved in data analysis, from preprocessing to visualization, to support accurate 

typhoon predictions. 

 

 
 

Figure 1: preprocessing the data[4]. 

 

Before proceeding with analysis, the data must undergo extensive preprocessing to ensure its quality and consistency. 

Meteorological data is cleaned to address missing values, outliers, and inconsistencies that could affect the accuracy of 

predictions. In the case of satellite imagery, preprocessing steps include the alignment of images with meteorological 

data, as well as adjustments for factors like cloud cover removal and resolution enhancement. The integration of live 

satellite images with historical data required additional preprocessing, such as matching current urban layouts with past 

event data to accurately analyze the impact on urban areas. 

 



© 2025 IJIRCCE | Volume 13, Issue 1, January 2025|                                   DOI: 10.15680/IJIRCCE.2025.1301104

 
 

IJIRCCE©2025                                                      |     An ISO 9001:2008 Certified Journal   |                                                      736 

 
 

Figure 2: retrieval of real-time satellite images for Taiwanese cities from Google Earth Engine 

 

Data Collection Using Google Earth Engine To gather the necessary satellite imagery, the project employed Google 

Earth Engine (GEE), a powerful platform for processing geospatial data. GEE's extensive library of satellite datasets 

and its cloud-based computational capabilities made it an ideal choice for this work. The data collection process 

involved multiple steps to ensure accuracy and relevance: 

 

Defining the Region of Interest (ROI): Each city's geographic boundaries were precisely outlined using polygonal 

coordinates. Cities such as Taipei, Kaohsiung, Tainan, and Taichung were selected for their diverse urban structures 

and geographical settings. The ROI for each city ensured that the analysis focused exclusively on the areas of interest, 

minimizing unnecessary data processing. 

 

Selecting Appropriate Data Sources: 

• Sentinel-2 Imagery: Known for its high resolution (10 meters) and short revisit period, Sentinel-2 data was used for 

detailed urban and geographical analysis. 

• MODIS Datasets: These were incorporated to capture broader atmospheric conditions, such as cloud cover and 

temperature variations, complementing the high-resolution imagery. 

 

Filtering and Preprocessing: 

• Satellite images were filtered by date to retrieve real-time data reflecting current conditions. 

• Preprocessing steps, including cloud masking, atmospheric correction, and cropping, were performed within GEE. 

This ensured that the imagery was clean and focused solely on relevant features. 

 

Observations from Satellite Imagery The analysis of the collected imagery revealed distinct patterns and characteristics 

across Taiwan’s cities. These insights were categorized into three primary areas: Urban Layouts: Taipei, as the capital 

city, showcased a dense and highly developed urban core, with large clusters of highrise buildings and extensive 

transportation networks. 

 

Smaller cities such as Tainan displayed more dispersed urban layouts, with significant areas dedicated to agricultural or 

undeveloped land. Geographical Features: Coastal cities, including Kaohsiung, exhibited proximity to natural harbors 

and waterways, emphasizing their importance as economic and trade hubs. Inland cities like Taichung were 

characterized by mountainous terrain and green spaces, providing a stark contrast to the urban sprawl of coastal areas. 

 

Real-time weather data can be used to issue timely alerts, mitigating potential damage and loss of life. Urban 

Development: By analyzing land use patterns, policymakers can make informed decisions on infrastructure 

development, zoning, and environmental conservation. Climate Resilience: 

The integration of meteorological and satellite data contributes to building climate-resilient cities, capable of adapting 

to extreme weather events. Some of the Advantages of Using Google Earth Engine The use of Google Earth Engine 

offered several benefits that streamlined the project: 

Comprehensive Data Access: GEE provides access to a vast array of datasets, including both historical and real-time 

satellite imagery, ensuring data diversity and reliability. 
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Cloud-Based Processing: The platform's cloud infrastructure eliminated the need for local computational resources, 

enabling efficient handling of large datasets. 

Real-Time Capabilities: The ability to retrieve and analyze live satellite imagery allowed for up-to-date observations, 

critical for real-time applications such as typhoon prediction. 

Scalability and Customization: GEE's scripting environment enabled the creation of customized workflows, allowing 

for the seamless integration of data processing, analysis, and visualization. Key Features Observed: Through this 

project, several unique characteristics of Taiwanese cities were highlighted: Dense Urbanization: Major cities like 

Taipei and Kaohsiung demonstrated significant urban sprawl, reflecting their economic and cultural significance. 

Geographical Diversity: The contrast between coastal and inland cities showcased Taiwan’s varied topography, from 

flat coastal plains to rugged mountainous regions. Dynamic Weather Patterns: Real-time observations of atmospheric 

conditions provided insights into local weather systems and their potential impacts. 

 
 

Figure 3: Real-Time Satellite Images of Taiwanese Cities 

 

Prediction Using Real-Time Satellite Images with XGBoost The ability to predict the occurrence of typhoons using 

satellite imagery is a crucial component of early warning systems for disaster management. In this project, we have 

utilized real-time satellite images and a machine learning model trained using XGBoost to identify potential typhoon 

events. Below is a detailed summary of the prediction pipeline. 

 

The data Collection and Real-Time Image Processing The first step involves collecting real-time satellite images from 

various sources, including weather monitoring satellites and satellite imagery APIs. These images provide visual data 
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about cloud formations, atmospheric disturbances, and weather patterns that are indicative of typhoon development. 

The satellite images used in this study are typically in infrared or visible spectrum formats, which capture temperature 

variations, cloud structures, and other relevant features. 

    

Preprocessing: 

• Resizing: The images are resized to a consistent size, such as 512x512 pixels, to match the input requirements of 

the prediction model. This ensures that all images are processed uniformly, regardless of their original resolution. 

• Normalization: The pixel values are scaled to a range of [0, 1], ensuring that the model receives input data on a 

consistent scale, improving the accuracy and efficiency of the predictions. 

• Feature Extraction: Specific features are extracted from the images, such as patterns of cloud coverage, 

temperature gradients, and atmospheric anomalies. These features are crucial for identifying patterns associated 

with typhoon events. 

 

XGBoost Model Training The XGBoost model was trained using a large dataset of historical satellite images of both 

typhoon and non-typhoon events. This dataset was carefully curated to include various meteorological features and 

satellite image characteristics that could differentiate typhoons from other weather phenomena. 

    

 Training Process: 

• Feature Engineering: The historical satellite images were processed to extract various features such as cloud 

movement, shape, and intensity. These features were then used as input to train the XGBoost model. 

• Model Configuration: Hyperparameters such as learning rate, maximum depth, and number of estimators were 

tuned to optimize the model’s performance. The XGBoost algorithm, being a gradient boosting technique, is well-

suited for this task because of its ability to handle complex and non-linear relationships in the data. 

• Cross-Validation: Cross-validation techniques were employed to validate the model’s generalization ability. The 

dataset was split into training and validation sets to evaluate the model’s performance and prevent overfitting. 

 

Making Predictions with Real-Time Data After training, the XGBoost model is used to predict typhoons in new, real-

time satellite images. The images are processed and passed through the model, which generates a prediction on whether 

the image corresponds to a typhoon or not. 

 

 
 

Image Preparation: For each new real-time satellite image, preprocessing steps such as resizing and normalization are 

performed to align with the input specifications of the XGBoost model. Model Inference: The processed image is 

passed through the trained XGBoost model, which outputs a probability score indicating the likelihood that the image 

contains a typhoon. Thresholding: A threshold value, typically set at 0.5, is applied to the model’s output. If the 

probability score is greater than or equal to the threshold, the image is classified as a typhoon event; otherwise, it is 

classified as non-typhoon. 
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The predictions made by the model are accompanied by visual representations of the satellite images to aid in 

interpretation. After the model generates a prediction, the corresponding satellite image is displayed with a title that 

indicates the predicted event: If the model predicts a typhoon, the title might read, “Prediction: Typhoon Event.” If the 

model predicts no typhoon, the title might read, “Prediction: No Typhoon.” This visual feedback allows users to 

quickly assess the outcome and helps validate the model’s prediction by visually inspecting the satellite image in 

question. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Real-Time Monitoring and Alert System for Typhoon Detection The integration of real-time satellite imagery with 

machine learning models facilitates continuous monitoring and early detection of typhoons, which is vital for disaster 

management and public safety. By leveraging this system, authorities can predict the formation of typhoons well in 

advance, enabling timely responses and minimizing the potential impact on populated regions. 

 

Automated Alerts for Typhoon Detection: The key benefit of this system is the ability to provide automated alerts 

based on the model’s predictions. Once a typhoon is detected by the model from real-time satellite images, the system 

triggers an alert mechanism to notify relevant stakeholders, such as disaster management teams, emergency responders, 

or the general public. This process ensures timely information is delivered for preparation and mitigation efforts, such 

as evacuations or safety measures. Alerts are generated and sent automatically through various communication 

channels, including email, SMS, and dashboard notifications. As new satellite data comes in, the system continuously 

updates predictions, ensuring that the information remains up-to-date and actionable. Twilio Integration for SMS Alerts 

To ensure effective communication during typhoon emergencies, Twilio API is integrated into the alert system to send 

SMS notifications. Once a typhoon is detected, the machine learning model triggers the Twilio client to send an SOS 

alert to recipients. This integration ensures that critical information is quickly disseminated to those at risk. 

 

Alert Message message serves as a vital communication tool to enhance public safety by urging individuals and 

authorities to act quickly and implement safety protocols. Image Processing Techniques for Typhoon Detection: The 

following image processing techniques are employed to enhance the detection of typhoons from satellite images,  

ensuring accurate identification of key features such as spiral bands and circular patterns, Gaussian Blurring: This 

technique is applied to smooth the image and reduce noise. By blurring the image, the algorithm can focus on 

significant structures while filtering out unwanted details. This preprocessing step improves the accuracy of subsequent 

edge detection, making it easier to identify typhoon-related patterns. Canny Edge Detection: The Canny edge detection 

algorithm is used to identify the boundaries and edges within the image.  

 

For typhoon detection, this is critical for highlighting the distinct spiral bands that form around the typhoon's center. 

These bands are key indicators of the typhoon's structure and intensity. Hough Circle Transform: This method detects 

circular patterns within the image, which are indicative of the spiral band structures commonly associated with 

typhoons.  

 

The circular shape is an important visual cue in identifying the central eye of the storm, a defining characteristic of 

typhoons. Grayscale Conversion: Converting the image to grayscale simplifies the image data, reducing it to a single 
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intensity channel. This simplifies the computational complexity and enhances the efficiency of image analysis while 

retaining critical features needed for typhoon detection. 

 

 

 
 

Figure 4: Different features on which Typhoon image depends 

  

The CSV file provides a detailed tabular representation of extracted features from satellite images, highlighting critical 

parameters such as spiral band counts, cloud density, and wind field characteristics. Each row corresponds to an 

analyzed image, offering insights into typhoon-specific attributes that are vital for understanding storm behavior. These 

features serve as inputs for training and testing the machine learning model, enabling accurate classification of images 

as "Typhoon" or "Non-Typhoon."  

 

The organized structure of the dataset not only facilitates robust analysis but also aids in future scalability and 

application of the system to real-world scenarios in meteorology and disaster management in all the situations. 

 

 
Figure 5: Cloud Density with 81.37% of cloud 
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Data Loading and Preprocessing: The dataset, consisting of features and labels, is loaded from a CSV file using 

`pandas`. The features (X) represent attributes such as environmental and satellite-based data, while the labels (y) 

indicate whether the image is of a typhoon (1) or non-typhoon (0). The data is split into training and testing sets using 

an 80/20 split. The training data is used to build the model, while the testing data serves as an unseen dataset to 

evaluate model performance. 

 

Feature Scaling: Since Random Forest does not necessarily require feature scaling, the features are standardized using a 

StandardScaler. This is particularly important for algorithms like neural networks but can also improve model stability 

and performance in some cases. The scaler is applied to the training set and then used to scale the test set as well. The 

scaler is saved as a `.pkl` file, ensuring that it can be reused for transforming new data or during future model 

predictions to maintain consistency in scaling. Model Building with Random Forest Classifier: A Random Forest 

Classifier is initialized with a fixed random state for reproducibility. The model is an ensemble of decision trees, where 

each tree is trained on a random subset of data, and predictions are averaged for more stable and accurate results. 

Hyperparameter tuning plays a crucial role in optimizing machine learning models. For the Random Forest classifier, 

GridSearchCV provides a systematic approach to fine-tuning hyperparameters by exhaustively searching through a pre-

defined parameter grid. This process ensures the model's predictive capabilities are maximized while maintaining 

generalizability. The model's performance is then rigorously evaluated to ensure that it meets real-world requirements 

for predicting typhoon events effectively. Hyperparameter Tuning using GridSearchCV. It helps identify the optimal 

combination of hyperparameters for the Random Forest model. Random Forest is an ensemble learning method known 

for its robustness, particularly in handling classification problems involving complex datasets. The following 

hyperparameters were tuned during the grid search: 

 

• GridSearchCV is employed to search through a range of hyperparameters for the Random Forest model to find the 

best combination. The parameters tuned include: 

• n_estimators: The number of trees in the forest (50, 100, or 200). 

• max_depth: The maximum depth of each tree, controlling the model's complexity. 

• min_samples_split: The minimum number of samples required to split an internal node. 

• min_samples_leaf: The minimum number of samples required to be at a leaf node. 

• Cross-validation (cv=3) is used during the grid search to ensure that the chosen hyperparameters generalize well to 

unseen data. 

• The best combination of hyperparameters is determined through this search, ensuring that the model is not 

overfitting or underfitting. 

 

III. RESULT AND EVALUATION 

 

Data Pre-processing: Data pre-processing is a crucial step in preparing input data for machine learning models, 

ensuring that the data aligns with the model's training specifications. In this context, the model receives input satellite 

images that undergo a series of pre-processing steps to standardize their format, making them suitable for prediction. 

Image Resizing: 

 

Satellite images can vary significantly in their dimensions depending on the source and resolution. To ensure 

consistency and compatibility with the model, each image is resized to a fixed dimension of 512x512 pixels. This size 

was chosen as a balance between preserving critical features in the image (such as cloud patterns and structures) and 

optimizing  

 

Computational efficiency.Rescaling: To match the range of pixel values in the model's training data, the image is 

rescaled. The pixel values, originally in the range of 0 to 255 (typical for 8-bit images), are normalized to a range 

between 0 and 1. Normalization helps the model process the data more effectively, as it reduces potential biases caused 

by varying pixel intensity scales and ensures that the image data aligns with the input expectations of the trained 

Random Forest Classifier. Ensuring 

 

• The image is resized to 512x512 pixels, ensuring a consistent input format. 

• The pixel values are scaled to the range of 0 to 1, normalizing the data for the model. 
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• The pre-processed image is passed through the Random Forest Classifier, which computes a prediction score. 

• The score is compared to the threshold of 0.5: 

• If the score is 0.7, the model classifies the image as a typhoon (label = 1). 

• If the score is 0.3, the model classifies the image as non-typhoon (label = 0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 

 

The project aimed to establish a comprehensive and reliable solution for the real-time detection and classification of 

typhoons using satellite imagery, combining the strengths of advanced machine learning techniques and real-time data 

processing. By leveraging the capabilities of both deep learning and traditional machine learning models, a robust 

framework was developed to support disaster management efforts effectively. The system integrated innovative 

methods such as the Xception deep learning model and the Random Forest machine learning model to ensure high 

accuracy and efficiency in predicting typhoon events. The amalgamation of computer vision, machine learning, and 

automated alert systems created a cohesive structure designed to mitigate the impacts of typhoons by enabling early 

detection and timely response. The Xception model, a sophisticated convolutional neural network (CNN), was selected 

for its ability to process satellite imagery and identify the intricate features associated with typhoons. The model's 

architecture, characterized by depthwise separable convolutions, allowed it to excel in detecting the complex visual 

patterns present in typhoon-related satellite data. Through extensive training on a large dataset of labeled infrared 

satellite images, the Xception model learned to identify specific typhoon features such as spiraling cloud formations, 

wind patterns, and other meteorological phenomena. Its state-of-the-art design ensured that the detection process was 

not only accurate but also efficient, making it highly suitable for the demands of real-time application.  

 

During the development process, several challenges were encountered, particularly in ensuring that the models could 

handle the diverse quality and characteristics of satellite images. Satellite imagery often varies in resolution, noise 

levels, and atmospheric conditions, making it essential to develop models that are robust and adaptable. The Xception 

model, while highly accurate, required extensive data augmentation and additional training to improve its 

generalization across different scenarios. Similarly, the Random Forest model's reliance on manually extracted features 

necessitated careful parameter tuning to achieve optimal performance. Despite these challenges, iterative improvements 

and refinements led to the development of a system that balanced the strengths of deep learning and traditional machine 

learning approaches, resulting in a high degree of prediction accuracy and reliability. The impact of this project is 

profound, particularly for regions that are vulnerable to the devastating effects of typhoons. By providing accurate and 

real-time detection capabilities, the system empowers disaster management authorities to take proactive measures, such 

as issuing warnings, evacuating at-risk populations, and deploying resources effectively. The project not only 

demonstrates the potential of machine learning and computer vision in environmental monitoring but also underscores 

their role in enhancing public safety and disaster preparedness. The integration of predictive modeling with automated 

alerts further highlights the practical benefits of the system, bridging the gap between technological innovation and 

real-world application. 
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