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ABSTRACT: Cloud Servers are maintaining distributed transactional databases. In these transactions all entities are 

cooperate to form Proofs of Authorizations which are justified by collections of certified credentials. These 

authorization proofs and certified credentials may be evaluated and collected over extended time periods under the risk 

of having underlying authorizations polices and user credentials being in inconsistent states. It becomes possible to 

make unsafe decisions that might threaten sensitive resource for policy based authorization systems. Mainly cloud 

computing provides many benefits in terms of low cost and accessibility of data. We cannot directly implement any 

security mechanisms in cloud platform due to varying of cloud service and deployment models. The major factor is 

providing a security for database transactions in cloud environment; users often store sensitive information in cloud 

databases that may be untrusted. In this paper we highlighted the criticality of problem that is the notion of untrusted 

transactions when dealing with the proof of authorizations in cloud environment. According to that we propose several 

levels of consistency constraints that are guarantee the safe and trustworthiness of transactions which are executing on 

cloud servers. Here we propose a Two Phase Validation Commit Protocol as a solution for analysing the different 

approaches presented using both analytical evaluation and simulation to the decision makers which one to use.                    

 

KEYWORDS: Cloud databases, authorization policies, consistency, distributed transactions, atomic commit protocol. 

 

I. INTRODUCTION 

 

Now a days cloud computing is an important computing paradigm in which storage and computation can be performed. 

Only limited companies are providing Cloud Computing such as Amazon, Google, IBM, Microsoft, and Yahoo etc. 

Such companies help free organizations from requiring expensive infrastructure. Cloud providers are to maintain, 

support, and broker access to high-end resources. From an economic perspective, cloud consumers can save huge IT 

capital investments and be charged on the basis of a pay-only-for-what-you-use model. 

 

 Cloud computing is having mainly three servicemodels and four deployment models. Those are Platform as a 

Service (Paas), Software as a Service (SaaS) and Infrastructure as a Service (IaaS), the deployment models are Public 

Cloud, Private Cloud, Hybrid Cloud, and Community Cloud.    

 

 One of the most important aspects of Cloud Computing is its elasticity and scalability, which provides infinite 

services to cloud consumers, on demand resources making it an efficient and attractive environment for highly scalable, 

multi-tiered applications. This can create additional challenges for back-end, transactional database systems, which 

were designed without elasticity in mind. Despite the efforts of key-value stores likeAmazon’s SimpleDB, Dynamo, 

and Google’s Bigtable to provide scalable access to huge amounts of data, transactional guarantees remain a bottleneck. 

To provide scalability and elasticity, cloud services often make heavy use of replication to ensure consistent 

performance and availability. As a result, many cloud services rely on the notion of eventual consistency when 

propagating data throughout the system. This consistency model is a variant of weak consistency that allows data to be 

inconsistent among some replicas during the update process, but all updates will eventually be propagated to all 

replicas. This will makes it difficult to strictly maintain the ACID guarantees, as the ―C‖ (consistency) part of ACID is 

sacrificed to provide reasonable availability. 

 

In systems that host sensitive resources, accesses are protected via authorization policies that describe the 

conditions under which users should be permitted access to resources. These policies describe relationships between the 

system principles, as well as the certified credentials that users must provide to attest to their attributes. In a traditional 

http://www.ijircce.com/


         

           
                  ISSN(Online): 2320-9801 

              ISSN (Print):  2320-9798                                                                                                                                 

International Journal of Innovative Research in Computer and Communication Engineering 

        An ISO 3297: 2007 Certified Organization         Vol.3, Special Issue 4, April 2015 

National Conference On Emerging Trends in Information, Digital & Embedded Systems (NC’e-TIDES -15) 

Organized by 

Dept. of ECE, Annamacharya Institute Of Technology & Sciences, Rajampet, Andhra Pradesh-516126, India held on 28
th

 February 2015 

 

Copyright @ IJIRCCE                               www.ijircce.com  22 

 

transactional database system that is deployed in a highly distributed and elastic system such as the cloud, policies 

would typically be replicated very much like dataamong multiple sites, often following the same weak or eventual 

consistency model. It therefore becomes possible for a policy-based authorization system to make unsafedecisions 

using stale policies. 

Consistency problems can arise intransactional database systems in cloud environments and use policy-based 

authorization systems toprotect sensitive resources. In addition to handling consistency issues among database replicas, 

we must handle two types of security inconsistency conditions. First, the system may suffer from policy inconsistencies 

during policy updates due to the relaxed consistency model underlying most cloud services. For example, it is possible 

for several versions of the policy to be observed at multiple sites within a single transaction, leading to inconsistent 

(and likely unsafe) access decisions during the transaction. Second, it is possible for external factors to cause user 

credential inconsistencies over the lifetime of a transaction. For instance, a user’s login credentials could be invalidated 

or revoked after collection by the authorization server,but before the completion of the transaction. In this paper, we 

address this confluence of data, policy, and credential inconsistency problems that can emerge as transactional database 

systems are deployed to the cloud. In doing so, we make the following contributions: 

 We formalize the concept of trusted transactions are those transactions that do not violate credential or policy 

inconsistencies over the lifetime of the transaction. We then present a more general term, safe transactions, 

that identifies transactions that are both trusted and conform to the ACID properties of distributed database 

systems. 

 We define several different levels of policy consistency constraints and corresponding enforcement 

approaches that guarantee the trustworthiness of transactions executing on cloud servers.  

 We propose a Two-Phase Validation Commit (2PVC) protocol that ensures that a transaction is safe by 

checking policy, credential, and data consistency during transaction execution. 

 We carry out an experimental evaluation of our proposed approaches, and present a tradeoff discussion to 

guide decision makers as to which approach are most suitable in various situations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Interaction among system components. 

 

The above Fig. 1 illustrates the interaction betweendifferent components in a cloud. In a cloud infrastructure consisting 

of a set of S servers, where each server is responsible for hosting a subset D of all data items D belonging to a specific 

application domain (D D). Users interact with the system by submitting queries or update requests encapsulated in 

ACID transactions. A transaction is submitted to a Transaction Manager (TM) that coordinates its execution. Multiple 

TMs could be invoked as the system workload increases for load balancing, but each transaction is handled by only one 

TM. 
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II. RELATED WORK 

 

Relaxed Consistency Models for the Cloud: Many database solutions were written for use within the cloud 

environment. For instance, Amazon’s Dynamo database, Google’s BigTable storage system; Facebook’s Cassandra; 

and Yahoo!’s PNUTS. The common thread between each of these custom data models is the relaxed notion of 

consistency provided to support massively parallel environments.  

 

Such a relaxed consistency model adds a new dimension to the complexity of the design of large scale 

applications and introduces a new set of consistency problems. The authors of presented a model that allows queriers to 

express consistency and concurrency constraints on their queries that can be enforced by the DBMS at runtime. On the 

other hand, a dynamic consistency rationing mechanism that automatically adapts the level of consistency at runtime. 

Both of these works focus on data consistency, while our work focuses on attaining both data and policy consistency. 

Reliable Outsourcing: Security is considered as a one of the major important aspect wider adoption of cloud 

computing. Particular attention has been given to client security as it relates to the proper handling of outsourced data. 

For example, proofs of data possession have been proposed as a means for clients to ensure that service providers 

actually maintain copies of the data that they are contracted to host. In other works, data replications have been 

combined with proofs of irretrievability to provide users with integrity and consistency guaranteeswhen using cloud 

storage. 

To protect user access patterns from a cloud data store, Williams et al. introduce a mechanism by which cloud 

storage users can issue encrypted reads, writes, and inserts. Further, Williams et al. propose a mechanism that enables 

untrusted service providers to support transaction serialization, backup, and recovery with full data confidentiality 

and correctness. This work is orthogonal to the problem that we focus on in this paper, namely consistency problems in 

policy-based database transactions. 

 

Distributed Transactions: CloudTPS provides full ACID properties with a scalable transaction manager designed for a 

NoSQL environment. However, CloudTPS is primarily concerned with providing consistency and isolation upon data 

without regard to considerations of authorization policies. 

 

There has also been recent work that focuses on providing some level of guarantee to the relationship between 

data and policies. This work proactively ensures that data stored at a particular site conforms to the policy stored at that 

site. If the policy is updated, the server will scan the data items and throw out any that would be denied based on the 

revised policy. It is obvious that this will lead to an eventually consistent state where data and policy conform, but this 

work only concerns itself with local consistency of a single node, not with transactions that span multiple nodes.  

 

Distributed Authorization: The consistency of distributed proofs of authorization has previously been studied, though 

not in a dynamic cloud environment. This work highlights the inconsistency issues that can arise in the case where 

authorization policies are static, but the credentials used to satisfy these policies may be revoked or altered. The authors 

develop protocols that enable various consistency guarantees to be enforced during the proof construction process to 

minimize these types of security issues. These consistency guarantees are similar to our notions of safe transactions. 

However, our work also addresses the case in which policies—in addition to credentials—may be altered or modified 

during a transaction. 

 

III. PROPOSED ALGORITHM 

 

A. Two-Phase Validation (2PV) Algorithm: 
A common characteristic of our proposed approach to achieve trusted transactions for policy consistency validation at 

the end of a transaction. That is, in order for a trusted transaction to commit, its TM has to enforce either view or global 

consistency among the servers participating in the transaction. Toward this, we propose a new algorithm called Two-

Phase Validation.  

 

As the name implies, 2PV operates in two phases: collection and validation. During collection, the TM first 

sends a Prepare-to-Validate message to each participant server. In response to this message, each participant 1) 
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evaluates the proofs for each query of the transaction using the latest policies it has available and 2) sends a reply back 

to the TM containing the truth value (TRUE/FALSE) of those proofs along with the version number and policy 

identifier for each policy used. Further, each participant keeps track of its reply (i.e., the state of each query) 

whichincludes the id of the TM (TMid), the id of the transaction (Tid) to which the query belongs, and a set of policy 

versions used in the query’s authorization (vi, pi).  

 

Once the TM receives the replies from all the participants, it moves on to the validation phase. If all polices 

are consistent, then the protocol honours the truth value whereany FALSE causes an ABORT decision and all TRUE 

cause a CONTINUE decision. In the case of inconsistent policies, the TM identifies the latest policy and sends an 

Update message to each out-of-date participant with a policy identifier and returns to the collection phase. In this case, 

the participants 1) update their policies, 2) re-evaluate the proofs and, 3) send a new reply to the TM. Algorithm 1 

shows the process for the TM. 

 
Algorithm 1: Two-Phase Validation - 2PV(TM) 

1. Send ―Prepare-to-Validate‖ to all participants. 

2. Wait for all replies (a True/False, and a set of policy versions for each unique policy)  

3. Identify the largest version for all unique policies 

4. If all participants utilize the largest version for each unique policy 

5. If any responded False 

6. ABORT 

7. Otherwise 

8. CONTINUE 

9. Otherwise, for all participants with old versions of policies 

10. Send ―Update‖ with the largest version number of each policy 

11. Goto 2 

 
B. Two-Phase Validate Commit Algorithm: 

The 2PV protocol enforces trusted transactions, but does not enforce safe transactions because it does not validate any 

integrity constraints. Since the Two-Phase Commit atomic protocol commonly used to enforce integrity constraints has 

similar structure as 2PV, we propose integrating these protocols into a Two-Phase Validation Commit protocol. 

2PVCcan be used to ensure the data and policy consistency requirements of safe transactions. Specifically, 2PVC will 

evaluate the policies and authorizations within the first, voting phase. That is, when the TM sends out a Prepare-to-

Commit message for a transaction, the participant server has three values to report 1) the YES or NO reply for the 

satisfaction of integrity constraints as in 2PC, 2) the TRUE or FALSE reply for the satisfaction of the proofs of 

authorizations as in 2PV, and 3) the version number of the policies used to build the proofs (vi, pi) as in 2PV. 

 

The process given in Algorithm 2 is for the TM under view consistency. It is similar to that of 2PV with the 

exception of handling the YES or NO reply for integrity constraint validation and having a decision of COMMIT rather 

than CONTINUE. The TM enforces the same behaviour as 2PV in identifying policies inconsistencies and sending the 

Update messages. The same changes to 2PV can be made here to provide global consistency by consulting the master 

policies server for the latest policy version (Step 5). 

 

The process given in Algorithm 2 is for the TM under view consistency. It is similar to that of 2PV with the 

exception of handling the YES or NO reply for integrity constraint validation and having a decision of COMMIT rather 

than CONTINUE. The TM enforces the same behaviour as 2PV in identifying policies inconsistencies and sending the 

Update messages. The same changes to 2PV can be made here to provide global consistency by consulting the master 

policies server for the latest policy version (Step 5). 

 
Algorithm 2: Two-Phase Validation Commit - 2PVC (TM). 

1. Send ―Prepare-to-Commit‖ to all participants 

2. Wait for all replies (Yes/No, True/False, and a set of policy versions for each unique     policy) 

3. If any participant replied No for integrity check 
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4. ABORT 

5. Identify the largest version for all unique Policies 

6. If all participants utilize the largest version for each unique policy 

7. If any responded False 

8. ABORT 

9. Otherwise 

10. COMMIT 

11. Otherwise, for participants with old policies 

12. Send ―Update‖ with the largest version number of each policy 

13. Wait for all replies 

14. Goto 5 

 

IV. PSEUDO CODE 

Step 1: Begin a Transaction 

Step 2: TM sends a ―Prepare toCommit ―message to all particular participate Server. 

Step 3: Get reply message from particular participate server.  

If NO 

  Abort 

 Else 

  Continue 

Step 4: If any inconsistent policies  

send out-of-date message to each participant server 

else 

Continue 

Step 5: Execute Transaction 

Step 6: End Transaction 

V. SIMULATION RESULTS 

 

We measure the average execution time of the shortestsuccessfully committed transactions (denoted ts), which 

occurswhen there are no policy changes, and the average execution time of the longest successfully committed 

transactions(denoted t f ), which occurs when policy changes force reevaluations of the proofs of authorization or 

multiple roundsof 2PV are invoked (e.g., in Continuous proofs). Essentially, t f captures the cost of recovering from a 

conflict. In the case of Continuous proofs, the worst case is when a policy change is detected each time a new server 

joins the execution of a transaction. The average transaction execution time to terminate (abort or commit) for 

Deferred, Punctual, and Continuous proofs can be computed using the following equation, where Purepresents the 

probability of a policy update:  

t=ts(1-pu)+tfPu                                                                         (1) 

 

As opposed to the other proofs of authorization, in Incremental Punctual proofs, if a policy change is detected 

during the execution of a transaction, the transaction will abort regardless if it is using view or global consistency. 

Thereforeto compute the average execution time, we assume that each aborted transaction is re-executed once to 

successful commit, with all servers using consistent policies. This assumption approximates the cost for rolling back 

the aborted transactions. We use the following equation to compute the average transaction execution time: 

t=(tf + ts)Pu+ts(1-Pu)                                                                          (2) 

 

Wheret f denotes the measured average time of the quickest aborted transactions among the simulation runs, 

and ts denote the average time of the successfully committed transactions. 

 

Using Equations 1 and 2, we plot Figures 3 and 4 to show our simulation results for both the LAN and the 

WAN arrangements respectively. Each figure shows the execution time of the committed transaction (y-axis) as the 

probability of the policy update changes (x-axis). The figures contrast between the four different approaches for proofs 

of authorization each with the two validation modes, namely, view and global consistency. The figures show different 
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transactions length: (a) short transactions involve 8–15 operations running on up to 5 servers, (b) medium transactions 

involve 16–30 operations running on up to 15 servers, and (c) long transactions involve 31–50 operations running on 

up to 25 servers. For each case, and as a baseline, we measured the transaction execution time when transactions 

execute without any proof of authorization and are terminated using the basic 2PC (shown in figures as a solid line 

referring to deferred 2PC only). In all cases, the average transaction execution time of deferred proofs with 2PVC was 

effectively the same as the baseline indicating that 2PVC has negligible overhead over the basic 2PC. 

 

The relative performance of the different proofs of authorization is consistent throughout the different 

experiments. From the figures, we can conclude that the deferred proofs have the best performance of all, as the 

transaction operations are allowed to proceed without interruption until commit time. Of course, proofs of authorization 

failing at commit time will force the transaction to go into a potentially expensive rollback. That will not be the case 

with the other schemes, as the proofs are evaluated earlier during the execution of the transactions and the rollback 

process of aborted transactions involves fewer operations.  

 

 

 
 

Fig 2. Results for LAN Experiments 

 

 
 

Fig 3. Results for WAN Experiments. 
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Punctual proofs come next in terms of performance. The minor difference between Punctual and Deferred 

proofs is because Punctual proofs incur the cost for the local authorization checks each of which is in the range of 3-5 

ms. Both Deferred and Punctual proofs are on average insensitive to the probability of policy updates (as realized from 

the graph slope). This is due to the fact that both schemes only enforce consistency at commit time.  

Incremental Punctual proofs show the worst performance of all schemes and are the most sensitive to the 

probability of policy updates. This is due to the fact that Incremental Punctual proofs using either view or global 

consistency have the risk of aborting and re-executing each time a policy update is encountered. As the policy update 

probability increases, the performance of Incremental Punctual is severely penalized. 

 

Continuous proofs show better performance than the Incremental Punctual approach, but are worse than the 

Deferred and Punctual approaches. Just as with Incremental Punctual, the performance of Continuous proofs suffers as 

the probability of policy update increases, as with each policy update all previously evaluated proofs will go through a 

re-evaluation phase using the 2PV protocol. A final observation is that in most cases, global consistency proofs are 

slightly slower than view consistency. This extra latency comes from the additional communication round between TM 

and the master policy server to retrieve the latest policy version. Global consistency proofs were faster than view 

consistency ones in the few cases when the latest policy happens to match policy used by all participating servers andas 

a result all servers skip the re-evaluation step of 2PVC. 

 

VI. CONCLUSION AND FUTURE WORK 

 

The popularity of cloud services and their wide adoption by enterprises, governments and different organizations, cloud 

providers still lack services that guarantee both data and access control policy consistency across multiple data centres. 

In this paper, we identified several consistency problems that can arise during cloud-hosted transaction processing 

using weak consistency models, particularly if policy-based authorization systems are used to enforce access controls. 

At the end, we developed variety of consistency modelsi.e., Deferred, Punctual, Incremental, and Continuous proofs, 

with view or global consistencythat can increasingly strong protections with minimum runtime overheads. 

 

We used simulated workloads to experiment the evaluate implementations of our proposed consistency models 

relative to three main core metrics such as transaction processing performance, accuracy, and precision for providing 

secure transactions in cloud databases. We found high performance comes at a cost of deferred and punctual proofs had 

minimum overheads. Finally high accuracy models (i.e., Incremental and Continuous) required higher code complexity 

to implement correctly, and had only moderate performance when compared to the lower accuracy schemes. To better 

explore the differences between these approaches, we also carried out a trade-offanalysis of our schemes to illustrate 

how application-centric requirements influence the applicability of the eight protocol variants explored in this article. 

Finally we develop a good performance, accuracy and precision with implementing of Scalability and Elasticity for 

database transactions in cloud. 
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